Concepts associés (27)
Vecteur position
En géométrie, le vecteur position, ou rayon vecteur, est le vecteur qui sert à indiquer la position d'un point par rapport à un repère. L'origine du vecteur se situe à l'origine fixe du repère et son autre extrémité à la position du point. Si l'on note M cette position et O l'origine, le vecteur position se note . On le note aussi ou . En physique, le vecteur déplacement d'un point matériel ou d'un objet est le vecteur reliant une ancienne position à une nouvelle, donc le vecteur position final moins le vecteur position initial.
Longitude
La longitude d'un point sur Terre (ou sur une autre sphère) est une coordonnée géographique représentée par une valeur angulaire, expression du positionnement est-ouest du point. Une longitude se mesure par rapport à une référence arbitraire qui, sur Terre, est généralement le méridien de Greenwich. Les points de même longitude appartiennent à une ligne épousant la courbure terrestre, coupant l'équateur à angle droit et reliant le pôle Nord au pôle Sud. Cette ligne est appelée « méridien ».
Vecteur unitaire
vignette|Deux vecteurs unitaires dans un espace vectoriel normé. Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1. Si le corps des scalaires est R, deux vecteurs unitaires v et w sont colinéaires si et seulement si v = w ou v = –w. Si le corps des scalaires est C, et si v est un vecteur unitaire de E, alors les vecteurs unitaires colinéaires à v sont αv où α est un complexe de module 1. Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E.
Coordonnées cylindriques
Un système de est un système de coordonnées curvilignes orthogonales qui généralise à l'espace celui des coordonnées polaires du plan en y ajoutant une troisième coordonnée, généralement notée z, qui mesure la hauteur d'un point par rapport au plan repéré par les coordonnées polaires (de la même manière que l'on étend le système de coordonnées cartésiennes de deux à trois dimensions). Les coordonnées cylindriques servent à indiquer la position d'un point dans l'espace. Les coordonnées cylindriques ne servent pas pour les vecteurs.
Normale (géométrie)
En mathématiques, et plus précisément en géométrie, la droite normale à une courbe ou à une surface en un point est une droite perpendiculaire à la tangente ou au plan tangent en ce point. Tout vecteur directeur de cette droite est appelé vecteur normal à la courbe ou à la surface en ce point. Une convention fréquente pour les surfaces fermées est de particulariser un vecteur normal unitaire, vecteur de norme 1 et orienté vers l'extérieur.
Espace euclidien
En mathématiques, un espace euclidien est un objet algébrique permettant de généraliser de façon naturelle la géométrie traditionnelle développée par Euclide, dans ses Éléments. Une géométrie de cette nature modélise, en physique classique, le plan ainsi que l'espace qui nous entoure. Un espace euclidien permet également de traiter les dimensions supérieures ; il est défini par la donnée d'un espace vectoriel sur le corps des réels, de dimension finie, muni d'un produit scalaire, qui permet de « mesurer » distances et angles.
Lieu géométrique
En mathématiques, un lieu géométrique est un ensemble de points remplissant une condition en fonction de son axe ou de son nombre de points, données par un problème de construction géométrique (par exemple à partir d'un point mobile sur une courbe) ou par des équations ou inéquations reliant des fonctions de points (notamment des distances). La médiatrice d'un segment est le lieu des points du plan à égale distance des extrémités de ce segment. L’arc capable est le lieu des points d’où l’on voit un segment sous un angle donné.
Composantes d'un vecteur
vignette|Composantes d'un vecteur dans un espace géométrique à trois dimensions, x, y et z. Dans le cas du concept géométrique classique de vecteur, il existe une identification complète entre ses « composantes » et les « coordonnées » qui le représentent. Cependant, il existe d'autres types d'espaces vectoriels (comme, par exemple, l'ensemble des polynômes d'ordre n), dans lesquels le concept de coordonnée n'a pas la généralité de l'idée de composante.
Variété pseudo-riemannienne
La géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants. Une métrique pseudo-riemannienne sur une variété différentielle M de dimension n est une famille g= de formes bilinéaires symétriques non dégénérées sur les espaces tangents de signature constante (p,q).
Horizontale et verticale
L'utilisation des termes inter-connectés vertical et horizontal ainsi que leurs symétries et asymétries varient avec le contexte (par exemple en deux ou trois dimensions ou dans les calculs à l'aide de l'approximation d'une terre plate en remplacement d'une terre sphérique). En astronomie, géographie et sciences et contextes connexes, une direction passant par un point donné est dit à la verticale si elle est localement alignée avec le vecteur de gravité à ce point.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.