Tableau de contingenceUn tableau de contingence est une méthode de représentation de données issues d’un comptage permettant d'estimer la dépendance entre deux caractères. Elle consiste à croiser deux caractères d'une population (par exemple une classe d'âge et un score) en dénombrant l'effectif correspondant à la conjonction « caractère 1 » et « caractère 2 ». Les effectifs partiels sont rassemblés dans un tableau à double entrée, par ligne pour le premier caractère, et par colonne en fonction du second caractère : c'est le « tableau de contingence ».
One- and two-tailed testsIn statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic. A two-tailed test is appropriate if the estimated value is greater or less than a certain range of values, for example, whether a test taker may score above or below a specific range of scores. This method is used for null hypothesis testing and if the estimated value exists in the critical areas, the alternative hypothesis is accepted over the null hypothesis.
Boschloo's testBoschloo's test is a statistical hypothesis test for analysing 2x2 contingency tables. It examines the association of two Bernoulli distributed random variables and is a uniformly more powerful alternative to Fisher's exact test. It was proposed in 1970 by R. D. Boschloo. A 2x2 contingency table visualizes independent observations of two binary variables and : The probability distribution of such tables can be classified into three distinct cases. The row sums and column sums are fixed in advance and not random.
Test du χ² de PearsonEn statistique, le test du χ2 de Pearson ou test du χ2 d'indépendance est un test statistique qui s'applique sur des données catégorielles pour évaluer la probabilité de retrouver la différence de répartition observée entre les catégories si celles-ci étaient indépendantes dans le processus de répartition sous-jacent. Il convient aux données non-appariées prises sur de grands échantillons (n>30). Il est le test du χ2 le plus communément utilisé (comparativement aux autres tests du χ2 tels que le test du χ2 de Yates, le test du rapport de vraisemblance ou le test du porte-manteau.
Permutation testA permutation test (also called re-randomization test) is an exact statistical hypothesis test making use of the proof by contradiction. A permutation test involves two or more samples. The null hypothesis is that all samples come from the same distribution . Under the null hypothesis, the distribution of the test statistic is obtained by calculating all possible values of the test statistic under possible rearrangements of the observed data. Permutation tests are, therefore, a form of resampling.
The lady tasting teavignette| L'expérience consiste à savoir si un dégustateur peut distinguer au goût une tasse de thé dans laquelle le thé ou le lait a été versé en premier. droite|vignette|308x308px| Ronald Fisher en 1913. Dans la conception des expériences en statistique, la dame dégustant du thé (the lady tasting tea) est une expérience aléatoire conçue par Ronald Fisher et rapportée dans son livre The Design of Experiments (1935). L'expérience est l'exposition originale de la notion de Fisher d'une hypothèse nulle, qui "n'est jamais prouvée ou établie, mais est peut-être réfutée, au cours de l'expérimentation".
Valeur pvignette|redresse=1.5|Illustration de la valeur-p. X désigne la loi de probabilité de la statistique de test et z la valeur calculée de la statistique de test. Dans un test statistique, la valeur-p (en anglais p-value pour probability value), parfois aussi appelée p-valeur, est la probabilité pour un modèle statistique donné sous l'hypothèse nulle d'obtenir une valeur au moins aussi extrême que celle observée. L'usage de la valeur-p est courant dans de nombreux domaines de recherche comme la physique, la psychologie, l'économie et les sciences de la vie.
Loi hypergéométriqueLa loi hypergéométrique de paramètres associés , et est une loi de probabilité discrète, décrivant le modèle suivant : On tire simultanément (ou successivement sans remise (mais cela induit un ordre)) boules dans une urne contenant boules gagnantes et boules perdantes (avec , soit un nombre total de boules valant = ). On compte alors le nombre de boules gagnantes extraites et on appelle la variable aléatoire donnant ce nombre. L'univers est l'ensemble des entiers de 0 à .
Ronald Aylmer FisherSir Ronald Aylmer Fisher est un biologiste et statisticien britannique, né à East Finchley le et mort le . Richard Dawkins le considère comme et Anders Hald comme l'homme qui a – . Pour Bradley Efron, il est le statisticien le plus important du . Dans le domaine de la statistique, il introduit de nombreux concepts-clés tels que le maximum de vraisemblance, l'information de Fisher et l'analyse de la variance, les plans d'expériences ou encore la notion de statistique exhaustive.
Maximum de vraisemblanceEn statistique, l'estimateur du maximum de vraisemblance est un estimateur statistique utilisé pour inférer les paramètres de la loi de probabilité d'un échantillon donné en recherchant les valeurs des paramètres maximisant la fonction de vraisemblance. Cette méthode a été développée par le statisticien Ronald Aylmer Fisher en 1922. Soient neuf tirages aléatoires x1, ..., x9 suivant une même loi ; les valeurs tirées sont représentées sur les diagrammes ci-dessous par des traits verticaux pointillés.