Concept

Grand hécatonicosachore étoilé

Concepts associés (10)
Regular 4-polytope
In mathematics, a regular 4-polytope is a regular four-dimensional polytope. They are the four-dimensional analogues of the regular polyhedra in three dimensions and the regular polygons in two dimensions. There are six convex and ten star regular 4-polytopes, giving a total of sixteen. The convex regular 4-polytopes were first described by the Swiss mathematician Ludwig Schläfli in the mid-19th century. He discovered that there are precisely six such figures.
Polyèdre étoilé
En géométrie, le terme polyèdre étoilé ne semble pas avoir été défini proprement, même si l'objet est pensé dans le sens commun. On peut dire qu'un polyèdre étoilé est un polyèdre qui possède une certaine qualité répétitive de non-convexité lui donnant l'aspect d'une étoile. Il existe deux espèces générales de polyèdres étoilés : Les polyèdres qui s'auto-intersectent d'une manière répétitive. Les polyèdres concaves d'une sorte particulière qui alternent les parties concaves et convexes ou les sommets de selle d'une manière répétitive.
Composé polyédrique
Un composé polyédrique est un polyèdre qui est lui-même composé de plusieurs autres polyèdres partageant un centre commun, l'analogue tridimensionnel des tels que l'hexagramme. Les sommets voisins d'un composé peuvent être connectés pour former un polyèdre convexe appelé l'enveloppe convexe. Le composé est un facettage de l'enveloppe convexe. Un autre polyèdre convexe est formé par le petit espace central commun à tous les membres du composé. Ce polyèdre peut être considéré comme le noyau pour un ensemble de stellations incluant ce composé.
Polytope régulier
droite|vignette|Le dodécaèdre régulier, un des cinq solides platoniciens. En mathématiques, plus précisément en géométrie ou encore en géométrie euclidienne, un polytope régulier est une figure de géométrie présentant un grand nombre de symétries. En dimension deux, on trouve par exemple le triangle équilatéral, le carré, les pentagone et hexagone réguliers, etc. En dimension trois se rangent parmi les polytopes réguliers le cube, le dodécaèdre régulier (ci-contre), tous les solides platoniciens.
Pentagonal polytope
In geometry, a pentagonal polytope is a regular polytope in n dimensions constructed from the Hn Coxeter group. The family was named by H. S. M. Coxeter, because the two-dimensional pentagonal polytope is a pentagon. It can be named by its Schläfli symbol as {5, 3n − 2} (dodecahedral) or {3n − 2, 5} (icosahedral). The family starts as 1-polytopes and ends with n = 5 as infinite tessellations of 4-dimensional hyperbolic space. There are two types of pentagonal polytopes; they may be termed the dodecahedral and icosahedral types, by their three-dimensional members.
Icositétrachore
L'icositétrachore, ou « 24-cellules » est un 4-polytope régulier convexe. Il est spécifique à la dimension 4 dans le sens où il ne possède aucun équivalent dans une autre dimension. On le dénomme aussi « 24-cellules », « icositétratope », ou « hypergranatoèdre ». On peut définir un icositétrachore dans au moyen des sommets de coordonnées , ainsi que ceux obtenus en permutant ces coordonnées. Ils sont au nombre de 24.
Hexacosichore
En géométrie, l'hexacosichore ou « 600-cellules » est le 4-polytope régulier convexe qui a comme symbole de Schläfli {3, 3, 5}. Il est composé de 600 cellules tétraédriques dont 20 qui se rencontrent à chaque sommet. Ensemble, ils forment triangulaires, 720 arêtes et 120 sommets. Les arêtes forment 72 décagones réguliers plans. Chaque sommet du 600-cellules est le sommet de six de ces décagones.
Polytope
Un polytope est un objet mathématique géométrique. Le terme de polytope a été inventé par Alicia Boole Stott, la fille du logicien George Boole. Le terme polytope admet plusieurs définitions au sein des mathématiques. Principalement car les usages diffèrent en quelques points selon les pays, mais l'usage américain ayant tendance à s'imposer, on se retrouve confronté avec des usages contradictoires au sein d'un même pays.
Figure de sommet
En géométrie, une figure de sommet d'un sommet donné d'un polytope est, de façon intuitive, l'ensemble des points directement reliés à ce sommet par une arête. Ceci s’applique également aux pavages infinis, ou pavages remplissant l’espace avec des cellules polytopiques. De façon plus précise, une figure de sommet pour un n-polytope est un (n-1)-polytope. Ainsi, une figure de sommet pour un polyèdre est une figure polygonale, et la figure de sommet pour un polychore est une figure polyèdrique.
Dual d'un polyèdre
En géométrie, il existe plusieurs façons (géométrique, combinatoire) de mettre les polyèdres en dualité : on peut se passer de support géométrique et définir une notion de dualité en termes purement combinatoires, qui s'étend d'ailleurs aux polyèdres et polytopes abstraits. Dans chaque cas, à tout polyèdre est associé un polyèdre appelé dual du premier, tel que : le dual du polyèdre dual est le polyèdre initial, les faces de l'un sont en correspondance avec les sommets de l'autre, en respectant les propriétés d'adjacence.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.