Concepts associés (12)
Modulo (opération)
En informatique, l'opération modulo, ou opération mod, est une opération binaire qui associe à deux entiers naturels le reste de la division euclidienne du premier par le second, le reste de la division de a par n (n ≠ 0) est noté a mod n (a % n dans certains langages informatiques). Ainsi 9 mod 4 = 1, car 9 = 2×4 + 1 et 0 ≤ 1 < 4, 9 mod 3 = 0, ... L'opération peut être étendue aux entiers relatifs, voire aux nombres réels, mais alors les langages de programmation peuvent diverger, en particulier a mod n n'est plus forcément positif ou nul.
Suite de Lucas
En mathématiques, les suites de Lucas U(P, Q) et V(P, Q) associées à deux entiers P et Q sont deux suites récurrentes linéaires d'ordre 2 à valeurs entières qui généralisent respectivement la suite de Fibonacci et celle de Fibonacci-Lucas, correspondant aux valeurs P = 1 et Q = –1. Elles doivent leur nom au mathématicien français Édouard Lucas. Soient P et Q deux entiers non nuls tels que (pour éviter les cas dégénérés). Les suites de Lucas U(P, Q) et V(P, Q) sont définies par les relations de récurrence linéaire et Notons l'une des deux racines carrées de Δ (éventuellement dans C).
Inverse modulaire
En mathématiques et plus précisément en arithmétique modulaire, l'inverse modulaire d'un entier relatif pour la multiplication modulo est un entier satisfaisant l'équation : En d'autres termes, il s'agit de l'inverse dans l'anneau des entiers modulo n, noté Z/nZ ou Z. Une fois ainsi défini, peut être noté , étant entendu implicitement que l'inversion est modulaire et se fait modulo . La définition est donc équivalente à : L'inverse de a modulo existe si et seulement si et sont premiers entre eux, (c.-à-d.
Algorithme d'Euclide étendu
En mathématiques, l'algorithme d'Euclide étendu est une variante de l'algorithme d'Euclide. À partir de deux entiers a et b, il calcule non seulement leur plus grand commun diviseur (PGCD), mais aussi un de leurs couples de coefficients de Bézout, c'est-à-dire deux entiers u et v tels que au + bv = PGCD(a, b). Quand a et b sont premiers entre eux, u est alors l'inverse pour la multiplication de a modulo b (et v est de la même façon l'inverse modulaire de b, modulo a), ce qui est un cas particulièrement utile.
Exponentiation rapide
En informatique, l'exponentiation rapide est un algorithme utilisé pour calculer rapidement de grandes puissances entières. En anglais, cette méthode est aussi appelée square-and-multiply (« mettre au carré et multiplier »). La première façon de calculer une puissance x est de multiplier x par lui-même n fois. Cependant, il existe des méthodes bien plus efficaces, où le nombre d'opérations nécessaires n'est plus de l'ordre de n mais de l'ordre de .
Algorithme de Shor
En arithmétique modulaire et en informatique quantique, l’algorithme de Shor est un algorithme quantique conçu par Peter Shor en 1994, qui factorise un entier naturel N en temps O et en espace . Beaucoup de cryptosystèmes à clé publique, tels que le RSA, deviendraient vulnérables si l'algorithme de Shor était un jour implanté dans un calculateur quantique pratique. Un message chiffré avec RSA peut être déchiffré par factorisation de sa clé publique N, qui est le produit de deux nombres premiers.
Logarithme discret
Le logarithme discret est un objet mathématique utilisé en cryptologie. C'est l'analogue du logarithme réel qui est la réciproque de l'exponentielle, mais dans un groupe cyclique G fini. Le logarithme discret est utilisé pour la cryptographie à clé publique, typiquement dans l'échange de clés Diffie-Hellman et le chiffrement El Gamal.
Petit théorème de Fermat
En mathématiques, le petit théorème de Fermat est un résultat de l'arithmétique modulaire, qui peut aussi se démontrer avec les outils de l'arithmétique élémentaire. Il s'énonce comme suit : « si p est un nombre premier et si a est un entier non divisible par p, alors ap–1 – 1 est un multiple de p », autrement dit (sous les mêmes conditions sur a et p), ap–1 est congru à 1 modulo p : Un énoncé équivalent est : « si p est un nombre premier et si a est un entier quelconque, alors ap – a est un multiple de p » : Il doit son nom à Pierre de Fermat, qui l'énonce pour la première fois en .
Arithmétique modulaire
En mathématiques et plus précisément en théorie algébrique des nombres, l’arithmétique modulaire est un ensemble de méthodes permettant la résolution de problèmes sur les nombres entiers. Ces méthodes dérivent de l’étude du reste obtenu par une division euclidienne. L'idée de base de l'arithmétique modulaire est de travailler non sur les nombres eux-mêmes, mais sur les restes de leur division par quelque chose. Quand on fait par exemple une preuve par neuf à l'école primaire, on effectue un peu d'arithmétique modulaire sans le savoir : le diviseur est alors le nombre 9.
Nombre premier
vignette|Nombres naturels de zéro à cent. Les nombres premiers sont marqués en rouge. vignette|Le nombre 7 est premier car il admet exactement deux diviseurs positifs distincts. Un nombre premier est un entier naturel qui admet exactement deux diviseurs distincts entiers et positifs. Ces deux diviseurs sont 1 et le nombre considéré, puisque tout nombre a pour diviseurs 1 et lui-même (comme le montre l’égalité n = 1 × n), les nombres premiers étant ceux qui ne possèdent pas d'autre diviseur.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.