Nombre rationnelUn nombre rationnel est, en mathématiques, un nombre qui peut s'exprimer comme le quotient de deux entiers relatifs. On peut ainsi écrire les nombres rationnels sous forme de fractions notées où , le numérateur, est un entier relatif et , le dénominateur, est un entier relatif non nul. Un nombre entier est un nombre rationnel : il peut s'exprimer sous la forme . Chaque nombre rationnel peut s'écrire d'une infinité de manières différentes sous forme de fraction, par exemple ...
Appartenance (mathématiques)vignette|Le symbole de l'appartenance. En mathématique ensembliste, l’ est une relation entre un élément et un ensemble, et également par abus de notations une relation entre un objet et une classe. On écrit pour signifier que l'élément appartient à l'ensemble , ou que l'objet appartient à la classe . L'axiome d'extensionnalité donne un rôle important à la relation d'appartenance, car elle permet de caractériser un ensemble par les éléments qui lui appartiennent.
Inégalité (mathématiques)En mathématiques, une inégalité est une formule reliant deux expressions numériques avec un symbole de comparaison. Une inégalité stricte compare nécessairement deux valeurs différentes tandis qu’une inégalité large reste valable en cas d’égalité. Contrairement à une interprétation étymologique, la négation d’une égalité (avec le symbole ≠) n’est pas considérée comme une inégalité et se traite différemment. Les inégalités permettent d’encadrer ou de distinguer des valeurs réelles, de préciser une approximation, de justifier le comportement asymptotique d’une série ou d’une intégrale.
Fraction (mathématiques)thumb|Trois quarts de gâteau, un quart ayant été retiré. En mathématiques, une fraction est un moyen d'écrire un nombre rationnel sous la forme d'un quotient de deux entiers. La fraction a/b désigne le quotient de a par b (b≠0). Dans cette fraction, a est appelé le numérateur et b le dénominateur. Une fraction représente un partage, le dénominateur représente le nombre de parts égales faites dans une unité et son numérateur représente le nombre de parts prises dans l'unité Un nombre que l'on peut représenter par des fractions de nombres entiers est appelé nombre rationnel.
GéométrieLa géométrie est à l'origine la branche des mathématiques étudiant les figures du plan et de l'espace (géométrie euclidienne). Depuis la fin du , la géométrie étudie également les figures appartenant à d'autres types d'espaces (géométrie projective, géométrie non euclidienne ). Depuis le début du , certaines méthodes d'étude de figures de ces espaces se sont transformées en branches autonomes des mathématiques : topologie, géométrie différentielle et géométrie algébrique.
Relation binaireEn mathématiques, une relation binaire entre deux ensembles E et F (ou simplement relation entre E et F) est définie par un sous-ensemble du produit cartésien E × F, soit une collection de couples dont la première composante est dans E et la seconde dans F. Cette collection est désignée par le graphe de la relation. Les composantes d'un couple appartenant au graphe d'une relation R sont dits en relation par R. Une relation binaire est parfois appelée correspondance entre les deux ensembles.
Triple barThe triple bar or tribar, ≡, is a symbol with multiple, context-dependent meanings indicating equivalence of two different things. Its main uses are in mathematics and logic. It has the appearance of an equals sign sign with a third line. The triple bar character in Unicode is code point . The closely related code point is the same symbol with a slash through it, indicating the negation of its mathematical meaning. In LaTeX mathematical formulas, the code \equiv produces the triple bar symbol and \not\equiv produces the negated triple bar symbol as output.
Prédicat (logique mathématique)En logique mathématique, un prédicat d'un langage est une propriété des objets du domaine considéré (l'univers du discours) exprimée dans le langage en question. Plus généralement cette propriété peut porter non seulement sur des objets (on peut préciser prédicat d'arité 1, à une place, monadique ou bien encore unaire), mais aussi sur des couples d'objets (on parle alors de prédicat binaire, ou d'arité 2, ou à deux places, ou encore de relation binaire), des triplets d'objets (prédicat ou relation ternaire ou d'arité 3 etc.