Système d'équations linéairesEn mathématiques et particulièrement en algèbre linéaire, un système d'équations linéaires est un système d'équations constitué d'équations linéaires qui portent sur les mêmes inconnues. Par exemple : Le problème est de trouver les valeurs des inconnues , et qui satisfassent les trois équations simultanément. La résolution des systèmes d'équations linéaires appartient aux problèmes les plus anciens dans les mathématiques et ceux-ci apparaissent dans beaucoup de domaines, comme en traitement numérique du signal, en optimisation linéaire, ou dans l'approximation de problèmes non linéaires en analyse numérique.
Équation quintiqueEn mathématiques, une équation quintique est une équation polynomiale dans laquelle le plus grand exposant de l'inconnue est 5. Elle est de forme générale : où a, b, c, d, e et f appartiennent à un corps commutatif (habituellement les rationnels, les réels ou les complexes), et a est non nul. La fonctionest une fonction quintique. Parce qu'elles ont un degré impair, les fonctions quintiques normales apparaissent similaires aux fonctions cubiques normales lorsqu'elles sont tracées, excepté sur le nombre de maxima locaux et minima locaux.
Équation linéaireUne équation à coefficients réels ou complexes est dite linéaire quand elle peut être présentée sous la forme ax = b ou, de manière équivalente ax – b = 0, où x est l'inconnue, a et b sont deux nombres donnés. Si a est différent de zéro, la seule solution est le nombre x = b/a. Plus généralement, une équation est dite linéaire lorsqu'elle se présente sous la forme u(x) = b, où u est une application linéaire entre deux espaces vectoriels E et F, b étant un vecteur donné de F. On recherche l'inconnue x dans E.
Pivignette|Si le diamètre du cercle est 1, sa circonférence est π. π (pi), appelé parfois constante d’Archimède, est un nombre représenté par la lettre grecque du même nom en minuscule (π). C’est le rapport constant de la circonférence d’un cercle à son diamètre dans un plan euclidien. On peut également le définir comme le rapport de l'aire d'un disque au carré de son rayon. Sa valeur approchée par défaut à moins de 0,5×10 près est en écriture décimale.
Variable (mathématiques)Dans les mathématiques supérieures et en logique, une variable est un symbole représentant, a priori, un objet indéterminé. On peut cependant ajouter des conditions sur cet objet, tel que l'ensemble ou la collection le contenant. On peut alors utiliser une variable pour marquer un rôle dans un prédicat, une formule ou un algorithme, ou bien résoudre des équations et d'autres problèmes. Il peut s'agir d'une simple valeur, ou d'un objet mathématique tel qu'un vecteur, une matrice ou même une fonction.
Equation solvingIn mathematics, to solve an equation is to find its solutions, which are the values (numbers, functions, sets, etc.) that fulfill the condition stated by the equation, consisting generally of two expressions related by an equals sign. When seeking a solution, one or more variables are designated as unknowns. A solution is an assignment of values to the unknown variables that makes the equality in the equation true. In other words, a solution is a value or a collection of values (one for each unknown) such that, when substituted for the unknowns, the equation becomes an equality.
Géométrie analytiqueLa géométrie analytique est une approche de la géométrie dans laquelle les objets sont décrits par des équations ou des inéquations à l'aide d'un système de coordonnées. Elle est fondamentale pour la physique et l'infographie. En géométrie analytique, le choix d'un repère est indispensable. Tous les objets seront décrits relativement à ce repère. Repérage dans le plan et dans l'espace Le terme de géométrie analytique, par opposition à la géométrie synthétique, se réfère aux méthodes d'analyse et synthèse pratiquées par les géomètres grecs.
Diophante d'AlexandrieDiophante d'Alexandrie (en grec ancien : Διόφαντος ὁ Ἀλεξανδρεύς Dióphantos ho Alexandreús) était un mathématicien de langue grecque qui a vécu à Alexandrie entre le et le , peut-être au ou au . Connu pour ses Arithmétiques, ouvrage dont une partie est aujourd'hui perdue, et où il étudie certaines équations diophantiennes, il est parfois surnommé le « père de l'algèbre ». On ne connaît rien ou à peu près de la vie de Diophante, même l'époque à laquelle il a vécu reste très incertaine. Il vécut à Alexandrie.
Algebraic expressionIn mathematics, an algebraic expression is an expression built up from constant algebraic numbers, variables, and the algebraic operations (addition, subtraction, multiplication, division and exponentiation by an exponent that is a rational number). For example, 3x2 − 2xy + c is an algebraic expression. Since taking the square root is the same as raising to the power 1/2, the following is also an algebraic expression: An algebraic equation is an equation involving only algebraic expressions.
Zéro d'une fonctionEn mathématiques, un zéro ou point d'annulation d'une fonction est une valeur en laquelle cette fonction s'annule. Autrement dit, il s'agit d'un antécédent de la valeur zéro. En particulier en analyse réelle, les zéros d'une fonction d'une variable correspondent aux abscisses des points d'intersection de sa courbe avec l'axe des abscisses. La détermination des zéros d'une fonction revient à résoudre l'équation . Les racines d'un polynôme sont les zéros de sa fonction polynomiale associée.