Grèce antiquevignette|La Grèce antique au La Grèce antique est une civilisation de l'Antiquité des peuples de langue et de culture grecque développée en Grèce et dans la partie occidentale de l'Asie Mineure, puis, à la suite de plusieurs phases d'expansion, dans d'autres régions du bassin méditerranéen (Chypre, Sicile, Italie du sud, Égypte, Cyrénaïque) et du Proche-Orient (Syrie, Palestine), constituant des points d'implantation jusque dans les actuelles Espagne et France à l'ouest et sur le territoire de l’actuel Afgha
Théorie des nombresTraditionnellement, la théorie des nombres est une branche des mathématiques qui s'occupe des propriétés des nombres entiers (qu'ils soient entiers naturels ou entiers relatifs). Plus généralement, le champ d'étude de cette théorie concerne une large classe de problèmes qui proviennent naturellement de l'étude des entiers. La théorie des nombres occupe une place particulière en mathématiques, à la fois par ses connexions avec de nombreux autres domaines, et par la fascination qu'exercent ses théorèmes et ses problèmes ouverts, dont les énoncés sont souvent faciles à comprendre, même pour les non-mathématiciens.
AngleEn géométrie, la notion générale d'angle se décline en plusieurs concepts. Dans son sens ancien, l'angle est une figure plane, portion de plan délimitée par deux demi-droites. C'est ainsi qu'on parle des angles d'un polygone. Cependant, l'usage est maintenant d'employer le terme « secteur angulaire » pour une telle figure. L'angle peut désigner également une portion de l'espace délimitée par deux plans (angle dièdre). La mesure de tels angles porte couramment mais abusivement le nom d'angle, elle aussi.
Entier naturelEn mathématiques, un entier naturel est un nombre permettant fondamentalement de compter des objets considérés comme des unités équivalentes : un jeton, deux jetons... une carte, deux cartes, trois cartes... Un tel nombre entier peut s'écrire avec une suite finie de chiffres en notation décimale positionnelle (sans signe et sans virgule). L’étude des entiers naturels est l’objet de l’arithmétique, branche des mathématiques, constituée dès l'Antiquité grecque.
Eudoxe de CnideEudoxe de Cnide, en grec ancien (–), est un astronome, géomètre, médecin et philosophe grec. Contemporain de Platon, il tenta le premier de formuler une théorie sur le mouvement des planètes. Ses travaux sont connus d’Archimède. Né à Cnide, en Carie (Asie Mineure) dans une famille fort pauvre, il apprend la géométrie auprès du pythagoricien Archytas (vers ) et la médecine auprès de Philistion de Sicile. À 23 ans, il se rend à Athènes, peut-être chez les cyrénaïques, dont il partageait les idées morales.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
RigourRigour (British English) or rigor (American English; see spelling differences) describes a condition of stiffness or strictness. These constraints may be environmentally imposed, such as "the rigours of famine"; logically imposed, such as mathematical proofs which must maintain consistent answers; or socially imposed, such as the process of defining ethics and law. "Rigour" comes to English through old French (13th c.
Commensurabilité (mathématiques)La commensurabilité est un terme mathématique essentiellement employé en histoire des mathématiques. Utilisé principalement dans la Grèce antique, il correspond au concept actuel de nombre rationnel. En mathématiques, deux grandeurs de même nature (deux longueurs, deux aires, deux volumes, etc.) non nulles a et b sont commensurables si et seulement s'il existe une unité u de ces grandeurs dont a et b soient multiples, i.e. tels qu'il existe un couple d'entiers (m, n) tels que a = mu et b = nu.
Compas (géométrie)vignette|redresse|Dessin d'un cercle avec un compas. vignette|redresse|Compas muni d'un stylo à pointe tubulaire. Un compas est un instrument de géométrie qui sert à tracer des cercles ou des arcs de cercle, mais aussi à comparer, reporter ou mesurer des distances. Il est constitué de deux branches jointes par une articulation. Les compas sont, ou ont été, utilisés en mathématiques, pour le dessin technique, en géographie pour le tracé et l'utilisation des cartes, etc.
CorollaireIn mathematics and logic, a corollary (ˈkɒrəˌlɛri , kɒˈrɒləri ) is a theorem of less importance which can be readily deduced from a previous, more notable statement. A corollary could, for instance, be a proposition which is incidentally proved while proving another proposition; it might also be used more casually to refer to something which naturally or incidentally accompanies something else (e.g., violence as a corollary of revolutionary social changes). In mathematics, a corollary is a theorem connected by a short proof to an existing theorem.