Problème bien poséLe concept mathématique de problème bien posé provient d'une définition de Hadamard qui pensait que les modèles mathématiques de phénomènes physiques devraient avoir les propriétés suivantes : Une solution existe ; La solution est unique ; La solution dépend de façon continue des données dans le cadre d’une topologie raisonnable. Le problème de Dirichlet pour l’équation de Laplace et l’équation de la chaleur avec spécification de conditions initiales sont des formulations bien posées.
Régularisation (mathématiques)vignette|Les courbes bleues et vertes correspondent à deux modèles differents, tous les deux étant des solutions possibles du problème consistant à décrire les coordonnées de tous les points rouges. L'application d'une régularisation favorise le modèle moins complexe correspondant à la courbe verte. Dans le domaine des mathématiques et des statistiques, et plus particulièrement dans le domaine de l'apprentissage automatique, la régularisation fait référence à un processus consistant à ajouter de l'information à un problème, s'il est mal posé ou pour éviter le surapprentissage.
Régression linéaireEn statistiques, en économétrie et en apprentissage automatique, un modèle de régression linéaire est un modèle de régression qui cherche à établir une relation linéaire entre une variable, dite expliquée, et une ou plusieurs variables, dites explicatives. On parle aussi de modèle linéaire ou de modèle de régression linéaire. Parmi les modèles de régression linéaire, le plus simple est l'ajustement affine. Celui-ci consiste à rechercher la droite permettant d'expliquer le comportement d'une variable statistique y comme étant une fonction affine d'une autre variable statistique x.
Problème inversevignette|une somme de plusieurs nombres donne le nombre 27, mais peut-on les deviner à partir de 27 ? En science, un problème inverse est une situation dans laquelle on tente de déterminer les causes d'un phénomène à partir des observations expérimentales de ses effets. Par exemple, en sismologie, la localisation de l'origine d'un tremblement de terre à partir de mesures faites par plusieurs stations sismiques réparties sur la surface du globe terrestre est un problème inverse.
Théorème de Gauss-MarkovEn statistiques, le théorème de Gauss–Markov, nommé ainsi d'après Carl Friedrich Gauss et Andrei Markov, énonce que dans un modèle linéaire dans lequel les erreurs ont une espérance nulle, sont non corrélées et dont les variances sont égales, le meilleur estimateur linéaire non biaisé des coefficients est l'estimateur des moindres carrés. Plus généralement, le meilleur estimateur linéaire non biaisé d'une combinaison linéaire des coefficients est son estimateur par les moindres carrés.
Validation croiséeLa validation croisée () est, en apprentissage automatique, une méthode d’estimation de fiabilité d’un modèle fondée sur une technique d’échantillonnage. Supposons posséder un modèle statistique avec un ou plusieurs paramètres inconnus, et un ensemble de données d'apprentissage sur lequel on peut apprendre (ou « entraîner ») le modèle. Le processus d'apprentissage optimise les paramètres du modèle afin que celui-ci corresponde le mieux possible aux données d'apprentissage.
Lasso (statistiques)En statistiques, le lasso est une méthode de contraction des coefficients de la régression développée par Robert Tibshirani dans un article publié en 1996 intitulé Regression shrinkage and selection via the lasso. Le nom est un acronyme anglais : Least Absolute Shrinkage and Selection Operator. Bien que cette méthode fut utilisée à l'origine pour des modèles utilisant l'estimateur usuel des moindres carrés, la pénalisation lasso s'étend facilement à de nombreux modèles statistiques tels que les modèles linéaires généralisés, les modèles à risque proportionnel, et les M-estimateurs.
Sélection de caractéristiqueLa sélection de caractéristique (ou sélection d'attribut ou de variable) est un processus utilisé en apprentissage automatique et en traitement de données. Il consiste, étant donné des données dans un espace de grande dimension, à trouver un sous-sensemble de variables pertinentes. C'est-à-dire que l'on cherche à minimiser la perte d'information venant de la suppression de toutes les autres variables. C'est une méthode de réduction de la dimensionnalité. Extraction de caractéristique Catégorie:Apprentissage
Degré de liberté (statistiques)En statistiques le degré de liberté (ddl) désigne le nombre de variables aléatoires qui ne peuvent être déterminées ou fixées par une équation (notamment les équations des tests statistiques). Une autre définition est : . Le degré de liberté est égal au nombre d'observations moins le nombre de relations entre ces observations : on pourrait remplacer l'expression « nombre de relations » par « nombre de paramètres à estimer ». Supposons un ensemble de n variables aléatoires, toutes de même loi et indépendantes X,.
Linear least squaresLinear least squares (LLS) is the least squares approximation of linear functions to data. It is a set of formulations for solving statistical problems involved in linear regression, including variants for ordinary (unweighted), weighted, and generalized (correlated) residuals. Numerical methods for linear least squares include inverting the matrix of the normal equations and orthogonal decomposition methods. The three main linear least squares formulations are: Ordinary least squares (OLS) is the most common estimator.