Problème de BurnsideEn mathématiques, le problème de Burnside est l'une des questions les plus anciennes et qui a eu le plus d'influence en théorie des groupes. En 1902, William Burnside demanda si un groupe de torsion de type fini est nécessairement fini. Cette conjecture fut réfutée soixante ans plus tard, ainsi que sa variante « bornée », tandis que sa variante « restreinte » a été démontrée, plus récemment, par Efim Zelmanov. De nombreux problèmes sur ces sujets sont encore ouverts aujourd'hui.
Immeuble de Bruhat-TitsEn mathématiques, un immeuble, aussi appelé l’immeuble Tits et l’immeuble Bruhat-Tits (nommé d'après François Bruhat et Jacques Tits) est une structure combinatoire et géométrique qui généralise simultanément certains aspects des variétés de drapeaux, des plans projectifs finis et des espaces riemanniens symétriques. Introduite par Jacques Tits comme moyen de comprendre la structure des groupes exceptionnels de type de Lie, la théorie a également été utilisée pour l'étude de la géométrie et de la topologie des espaces homogènes des groupes de Lie p-adiques et leurs sous-groupes de symétrie discrets, de la même manière que les arbres ont été utilisés pour étudier les groupes libres.
Groupe hyperboliqueEn théorie géométrique des groupes — une branche des mathématiques — un groupe hyperbolique, ou groupe à courbure négative, est un groupe de type fini muni d'une métrique des mots vérifiant certaines propriétés caractéristiques de la géométrie hyperbolique. Cette notion a été introduite et développée par Mikhaïl Gromov au début des années 1980. Il avait remarqué que beaucoup de résultats de Max Dehn concernant le groupe fondamental d'une surface de Riemann hyperbolique ne reposaient pas sur le fait qu'elle soit de 2 ni même que ce soit une variété, mais restaient vrais dans un contexte beaucoup plus général.
Growth rate (group theory)In the mathematical subject of geometric group theory, the growth rate of a group with respect to a symmetric generating set describes how fast a group grows. Every element in the group can be written as a product of generators, and the growth rate counts the number of elements that can be written as a product of length n. Suppose G is a finitely generated group; and T is a finite symmetric set of generators (symmetric means that if then ).
Max DehnMax Dehn ( – ) est un mathématicien allemand. Il a étudié les fondements de la géométrie avec Hilbert à Göttingen en 1899, et obtenu une preuve du théorème de Jordan pour les polygones. En 1900, il a soutenu sa thèse sur le rôle du dans la géométrie axiomatique. En 1900, il a aussi résolu le troisième problème de Hilbert. Il était en poste de 1900 à 1911 à l'université de Münster. Ses intérêts se tournent ensuite vers la topologie et la théorie combinatoire des groupes.
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.
Graphe de CayleyEn mathématiques, un graphe de Cayley (du nom d'Arthur Cayley) est un graphe qui encode la structure d'un groupe. C'est un outil important pour l'étude de la combinatoire et de la géométrie des groupes. Étant donné un groupe et une partie génératrice de ce groupe, le graphe de Cayley Cay(G,S) est construit comme suit : À chaque élément de , on associe un sommet . À chaque élément de , on associe une couleur . Pour tout et , on trace une arête orientée de couleur du sommet vers le sommet .
Topologie en basses dimensionsEn mathématiques, la topologie en basses dimensions est la branche de la topologie qui concerne les variétés de dimension inférieure ou égale à quatre. Des sujets représentatifs en sont l'étude des variétés de dimension 3 et la théorie des nœuds et des tresses. Elle fait partie de la topologie géométrique. Un certain nombre d'avancées, à partir des années 1960, ont mis l'accent sur les basses dimensions en topologie.
Jacques TitsJacques Tits, né le à Uccle et mort le dans le , est un mathématicien français, d'origine belge. Professeur à l'université libre de Bruxelles (nommé à ), il écrit et coécrit un grand nombre d'articles sur des sujets variés, principalement en géométrie et en algèbre. Il effectue l’essentiel de sa carrière au Collège de France à Paris. Il est récompensé en 2008 par le prix Abel, l’une des récompenses les plus prestigieuse en mathématiques. Tits a découvert les mathématiques grâce à son père, lui-même mathématicien, en consultant les ouvrages de sa bibliothèque.
Produit libreEn mathématiques, et plus particulièrement en théorie des groupes, le produit libre de deux groupes G et H est un nouveau groupe, noté G∗H, qui contient G et H comme sous-groupes, est engendré par les éléments de ces sous-groupes, et constitue le groupe « le plus général » possédant ces propriétés. Le produit libre est le coproduit, ou « somme », dans la catégorie des groupes, c'est-à-dire que la donnée de deux morphismes, de G et H dans un même groupe K, équivaut à celle d'un morphisme de G∗H dans K.