Espace préhilbertienEn mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d'un produit scalaire. Cette notion généralise celles d'espace euclidien ou hermitien dans le cas d'une dimension quelconque, tout en conservant certaines bonnes propriétés géométriques des espaces de dimension finie grâce aux propriétés du produit scalaire, mais en perdant un atout de taille : un espace préhilbertien de dimension infinie n'est pas nécessairement complet. On peut cependant le compléter, pour obtenir un espace de Hilbert.
Système de coordonnéesvignette|upright=0.7|Système de coordonnées cartésiennes dans un plan vignette|upright=0.7|Système de coordonnées cartésiennes en 3 dimensions En mathématiques, un système de coordonnées permet de faire correspondre à chaque point d'un espace à N , un (et un seul) N-uplet de scalaires. Dans beaucoup de cas, les scalaires considérés sont des nombres réels, mais il est possible d'utiliser des nombres complexes ou des éléments d'un corps commutatif quelconque.
DifféomorphismeEn mathématiques, un difféomorphisme est un isomorphisme dans la catégorie usuelle des variétés différentielles : c'est une bijection différentiable d'une variété dans une autre, dont la bijection réciproque est aussi différentiable. vignette|Image d'une grille à maille carrée par un difféomorphisme du carré dans lui-même. Soient : E et F deux espaces vectoriels normés réels de dimension finie ; U un ouvert de E, V un ouvert de F ; f une application de U dans V.
Intervalle (mathématiques)En mathématiques, un intervalle (du latin intervallum) est étymologiquement un ensemble ordonné de points compris entre deux bornes. Cette notion première s'est ensuite développée jusqu'à aboutir à la notion topologique de boule d'un espace métrique. Initialement, on appelle intervalle réel un ensemble de nombres délimité par deux nombres réels constituant une borne inférieure et une borne supérieure. Un intervalle contient tous les nombres réels compris entre ces deux bornes.
Variété pseudo-riemannienneLa géométrie pseudo-riemannienne est une extension de la géométrie riemannienne ; au même titre que, en algèbre bilinéaire, l'étude des formes bilinéaires symétriques généralisent les considérations sur les métriques euclidiennes. Cependant, cette géométrie présente des aspects non intuitifs des plus surprenants. Une métrique pseudo-riemannienne sur une variété différentielle M de dimension n est une famille g= de formes bilinéaires symétriques non dégénérées sur les espaces tangents de signature constante (p,q).
Atlas (topology)In mathematics, particularly topology, an atlas is a concept used to describe a manifold. An atlas consists of individual charts that, roughly speaking, describe individual regions of the manifold. If the manifold is the surface of the Earth, then an atlas has its more common meaning. In general, the notion of atlas underlies the formal definition of a manifold and related structures such as vector bundles and other fiber bundles. Topological manifold#Coordinate charts The definition of an atlas depends on the notion of a chart.
Origine (mathématiques)En mathématiques, lorigine d'un espace euclidien est un point spécial, couramment noté O, utilisé comme point fixe de référence qui servira de repère pour la géométrie de l'espace environnant. Dans les problèmes physiques, le choix de l'origine est souvent arbitraire, ce qui impliquerait que le choix de n'importe quelle origine donnera la même réponse. Ceci autorise à choisir un point d'origine qui simplifie les calculs autant que possible, en utilisant notamment des propriétés avantageuses de symétrie.
Ludwig SchläfliLudwig Schläfli (1814-1895) est un mathématicien suisse spécialiste en géométrie et en analyse complexe. Il a joué un rôle clé dans le développement de la notion d’espace de dimension quelconque. Ludwig Schläfli a passé la majeure partie de sa vie en Suisse. Il est né à Grasswyl, ville natale de sa mère. La famille a ensuite déménagé pour la ville proche de Berthoud, où son père était commerçant. Son père voulait que Ludwig fît le même métier que lui, mais il ne semblait pas fait pour le travail pratique.
August Ferdinand MöbiusAugust Ferdinand Möbius (, né le à Bad Kösen dans le village de Schulpforta, électorat de Saxe, Saint-Empire et mort le à Leipzig, fut un mathématicien et astronome théoricien à l'université de Leipzig. Fils unique de Johann Heinrich Möbius, professeur de danse à Schulpforta, le jeune August Ferdinand naît dans le village. Trois ans plus tard son père meurt, il est alors élevé par sa mère, descendante de Martin Luther, qui s'occupe directement de son éducation jusqu'à ce qu'il ait atteint l'âge de 13 ans, avant d'entrer lui-même à Schulpforta.