Régularisation zêtaEn analyse fonctionnelle, la régularisation zêta est une méthode de régularisation des déterminants d'opérateurs qui apparaissent lors de calculs d'intégrales de chemins en théorie quantique des champs. Soit un domaine compact de à bord . Sur ce domaine, on considère l'opérateur positif , où est le Laplacien, muni de conditions aux limites sur le bord du domaine (Dirichlet, Neumann, mixtes) qui précisent complètement le problème.
Fonction êta de DirichletLa fonction êta de Dirichlet est une fonction utilisée dans la théorie analytique des nombres. Elle peut être définie par : où ζ est la fonction zêta de Riemann. Néanmoins, elle peut aussi être utilisée pour définir la fonction zêta sauf aux zéros du facteur 1–2. Elle possède une expression en série de Dirichlet, valide pour tout nombre complexe s avec une partie réelle positive, donnée par : d'où son nom parfois donné de fonction zêta alternée.
Sommation de Ramanujanvignette|redresse=2|alt=Photographie noir et blanc d'un texte manuscrit, formant une démonstration mathématique.|Une sommation de Ramanujan, dans son premier cahier, montrant pourquoi la somme de tous les entiers est égale à -1/12. En analyse, la sommation de Ramanujan est une technique inventée par le mathématicien Srinivasa Ramanujan pour donner une valeur aux séries infinies divergentes.
1 + 2 + 4 + 8 + ⋯En mathématiques, est la série infinie dont les termes sont les puissances successives de 2. Comme une série géométrique, elle se caractérise par son premier terme, 1, et sa raison, 2. Comme une série de nombres réels, elle diverge vers l'infini, donc dans le sens usuel, elle n'a pas de somme. Dans un sens beaucoup plus large, la série est associée à une autre valeur en dehors de ∞, à savoir –1. Les sommes partielles de sont Puisque celles-ci divergent à l'infini, la série diverge aussi vers l'infini.
Série alternée des entiersvignette|Les premiers milliers de termes et de sommes partielles de 1 − 2 + 3 − 4 + ... En mathématiques, la série alternée des entiers est la série associée à la suite des nombres entiers (strictement positifs), affectés de signes alternés. Les sommes partielles de cette série peuvent donc s'écrire sous la forme : Cette série est divergente car la suite des sommes partielles est une suite divergente et n'admet donc pas de limite finie.
1 + 1 + 1 + 1 + ⋯En mathématiques, 1 + 1 + 1 + 1 + ⋯, également écrit , ou simplement , est une série divergente, ce qui signifie que la suite de ses sommes partielles ne converge pas vers une limite dans les nombres réels. La suite (1n) est la suite géométrique de raison 1. La série géométrique de raison 1, à la différence de toutes les autres de raison rationnelle différente de −1, ne converge ni dans les réels, ni dans les nombres p-adiques pour certains p. Dans la droite réelle achevée, puisque la suite des sommes partielles est croissante et non majorée.
Série de Grandivignette|Écriture mathématique de la série de Grandi En analyse mathématique, la série 1 − 1 + 1 − 1 + ... ou est parfois appelée la série de Grandi, du nom du mathématicien, philosophe et prêtre Luigi Guido Grandi, qui en donna une analyse célèbre en 1703. Il s'agit d'une série divergente, c'est-à-dire que la suite de ses sommes partielles n'a pas de limite. Mais sa somme de Cesàro, c'est-à-dire la limite des moyennes de Cesàro de cette même suite, existe et vaut . Une méthode évidente pour traiter la série 1 − 1 + 1 − 1 + 1 − 1 + 1 − 1 + .
Série divergenteEn mathématiques, une série infinie est dite divergente si la suite de ses sommes partielles n'est pas convergente. En ce qui concerne les séries de nombres réels, ou de nombres complexes, une condition nécessaire de convergence est que le terme général de la série tende vers 0. Par contraposition, cela fournit de nombreux exemples de séries divergentes, par exemple celle dont tous les termes valent 1.
Srinivasa Ramanujanvignette|thumbtime=566|start=567|end=610|alt=documentaire indien en anglais|upright=1.5|Extrait de Srinivasa Ramanujan- The Mathematician & His Legacy (Srinivasa Ramanujan : le mathématicien et son héritage), un documentaire produit par le Ministère des Affaires étrangères de l'Inde ; on y voit les cahiers de Ramanujan, conservés à l'université de Madras. Srinivasa Ramanujan (en tamoul : சீனிவாச இராமானுஜன் ; ), né le à Erode et mort le à Kumbakonam, est un mathématicien indien.
Sommation de CesàroEn analyse, la sommation de Cesàro est un procédé de sommation permettant d'assigner une somme à certaines séries divergentes au sens usuel. Si la série est convergente au sens usuel, elle l'est également au sens de Cesàro et sa somme de Cesàro est égale à sa somme « classique ». En revanche, une série divergente peut avoir une somme de Cesàro bien définie. La sommation de Cesàro porte le nom de l'analyste italien Ernesto Cesàro (1859–1906), à cause de l’utilisation de ce qu'on appelle aujourd’hui le lemme de Cesàro.