Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Couvre la théorie des probabilités, les distributions et l'estimation dans les statistiques, en mettant l'accent sur la précision, la précision et la résolution des mesures.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Explore l'estimation de la probabilité maximale et les tests d'hypothèses multivariées, y compris les défis et les stratégies pour tester plusieurs hypothèses.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.