Couvre le rôle des symétries et des groupes dans la mécanique quantique, en se concentrant sur SU2 et SU3, leurs propriétés et leurs implications pour les théories physiques.
Explore les nombres complexes, les opérations, la valeur absolue et la forme polaire, ainsi que l'analyse et la représentation graphique des nombres complexes.
Explore le bien-fondé et la convergence des problèmes électromagnétiques, y compris l'interpolation de continuité, la loi de Darcy et les propriétés de surjectivité.
Couvre les concepts d'homéomorphismes locaux et de couvertures en multiples, en mettant l'accent sur les conditions dans lesquelles une carte est considérée comme un homéomorphisme local ou une couverture.