Explore le couplage des chaînes de Markov et la preuve du théorème ergodique, en mettant l'accent sur la convergence des distributions et les propriétés de la chaîne.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.
Explore les distributions invariantes, les états récurrents et la convergence dans les chaînes de Markov, y compris des applications pratiques telles que PageRank dans Google.