Explore les approches dynamiques de la théorie spectrale des opérateurs, en mettant l'accent sur les opérateurs auto-adjoints et les opérateurs Schrödinger avec des potentiels définis dynamiquement.
Explore l'influence de la complexité sur les propriétés ergonomiques des systèmes symboliques, présentant le théorème Curtis-Hedlund-Lyndon et les constructions de sous-postes minimaux.
Explore les applications de la théorie ergonomique à la combinatoire et la théorie des nombres, y compris le théorème de Szemerédi et le théorème d'Erdős-Kac.
Explore des éléments de la théorie ergonomique, des transformations, des ensembles invariants et des exposants Lyapunov pour des cartes à une dimension.
Explore les déformations infinitésimales des cartes unidimensionnelles, en discutant des caractéristiques communes, des méthodes et des résultats récents dans l'expansion et l'expansion des cartes.