Couvre les modèles ARMA pour la prévision des séries chronologiques, en discutant des implications, des propriétés des erreurs de prévision, des défis avec les prédictions et des modèles de covariance.
Explore la gestion de la demande, les méthodes de prévision, l'effet bullwhip, l'impact de l'industrie horlogère suisse et les biais cognitifs dans les affaires.
Couvre les modèles de données de comptage et la régression de Poisson, puis les transitions vers une analyse univariée des séries chronologiques pour la prévision des variables économiques.
Explore l'estimation paramétrique, les processus intégrés, la modélisation saisonnière et la construction de modèles ARIMA dans l'analyse des séries chronologiques.
Explore la prévision de la demande par le biais de l'initiation du modèle, y compris l'identification des tendances, les composantes saisonnières et la détermination du niveau de base, afin de valider et de surveiller les erreurs de prévision.
Discute de la gestion de la demande, des méthodes de prévision et des étapes de la prévision de la demande, en soulignant l'importance de prévisions précises.
Explore des modèles pour la prévision, la planification collaborative des ventes et des opérations, la gestion de la chaîne d'approvisionnement et l'optimisation des stocks.
Couvre l'analyse et la modélisation des séries chronologiques univariées, en mettant l'accent sur la stationnarité, les processus ARMA et la prévision.
Explore les propriétés stochastiques et la modélisation des séries chronologiques, couvrant l'autocovariance, la stationnarité, la densité spectrale, l'estimation, la prévision, les modèles ARCH et la modélisation multivariée.