Présente deux exemples fondamentaux d'ensembles simpliciaux: le nerf d'une petite catégorie et l'ensemble simplicial singulier d'un espace topologique.
Se concentre sur la preuve de la construction de la catégorie d'homotopie et de ses propriétés, y compris la préservation de la composition et de l'unicité des foncteurs.
Couvre les objets fibreux, le levage des cornes, et l'adjonction entre quasi-catégories et complexes kan, ainsi que la généralisation des catégories et complexes kan.
Explore la théorie de l'homotopie des complexes de chaînes, en se concentrant sur les catégories de modèles, les équivalences faibles, et l'axiome de rétractation.
Démontre l'équivalence entre l'homologie simpliciale et singulière, prouvant les isomorphismes pour les complexes s finis et discutant de longues séquences exactes.