Explore la conception de poids et l'analyse de stabilité dans les systèmes de contrôle multivariables, en mettant l'accent sur la théorie Lyapunov et la stabilité LQR.
Explore l'apprentissage et le contrôle des systèmes complexes, en abordant les défis et les possibilités en matière de technologie et de recherche interdisciplinaire.
Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.
Explore le contrôle des systèmes dynamiques, la réponse impulsionnelle, la transformée de Laplace et la transformée de Fourier pour résoudre les équations différentielles.
Explore la théorie du contrôle quadratique optimal linéaire, couvrant les problèmes FH-LQ et IH-LQ et l'importance de l'observabilité dans les systèmes de contrôle.