Séries chronologiques financières : Faits stylisés et modélisation
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore la dépendance, la corrélation et les attentes conditionnelles en matière de probabilité et de statistiques, en soulignant leur importance et leurs limites.
Explore les copules dans les statistiques multivariées, couvrant les propriétés, les erreurs et les applications dans la modélisation des structures de dépendance.
Introduit l'analyse des composantes principales, en mettant l'accent sur la maximisation de la variance dans les combinaisons linéaires pour résumer efficacement les données.
Couvre la méthodologie Box-Jenkins pour construire des modèles de séries chronologiques, y compris l'identification des modèles, les calculs de variance et le diagnostic des modèles.
Explore la mémoire longue dans les séries temporelles et les processus d'hétéroskédasticité conditionnelle autorégressive dans les données financières.
Couvre la méthode des moments pour estimer les paramètres et construire des intervalles de confiance basés sur des moments empiriques correspondant à des moments de distribution.