Couvre l'existence de solutions pour le problème de Poisson-Dirichlet, en se concentrant sur la démonstration que certaines conditions s'appliquent aux fonctions continues délimitées localement et à Hlder.
Couvre le caractère unique des solutions dans les équations différentielles, en se concentrant sur le théorème de Cauchy-Lipschitz et ses implications pour les solutions locales et globales.
Couvre le caractère unique des solutions dans les équations différentielles, en se concentrant sur le théorème de Cauchy-Lipschitz et ses implications pour les solutions locales et globales.