Explore les valeurs propres et les vecteurs propres des chaînes de Markov, en se concentrant sur les taux de convergence et les propriétés matricielles.
Explore le pseudo-aléatoire dans les graphes en utilisant des valeurs propres et des polynômes, en soulignant l'importance des racines groupées et des entrelaceurs communs.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Explore les graphiques isogéniques de courbes elliptiques supersingulaires, montrant des temps de mélange optimaux pour des promenades aléatoires et des applications à la cryptographie.
Explore la théorie des graphes, les matrices stochastiques, les algorithmes de consensus et les propriétés spectrales dans les systèmes de contrôle en réseau.
Explore les algorithmes de consensus qui varient dans le temps dans les systèmes de contrôle en réseau et le rôle de la matrice laplacienne dans l'obtention d'un consensus moyen.