Explore la cohérence et les propriétés asymptotiques de l’estimateur de vraisemblance maximale, y compris les défis à relever pour prouver sa cohérence et construire des estimateurs de type MLE.
Explore l'estimation ponctuelle dans les statistiques, en discutant du biais, de la variance, de l'erreur quadratique moyenne et de la cohérence des estimateurs.
Explore la régression linéaire dans une perspective d'inférence statistique, couvrant les modèles probabilistes, la vérité au sol, les étiquettes et les estimateurs de probabilité maximale.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Explore le phénomène Stein, présentant les avantages du biais dans les statistiques de grande dimension et la supériorité de l'estimateur James-Stein sur l'estimateur de probabilité maximale.