Dualité conjuguée : Représentations et sous-gradants de l'enveloppe
Graph Chatbot
Chattez avec Graph Search
Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explore les fonctions convexes, les transformations d'affines, le maximum pointu, la minimisation, le Lemma de Schur et l'entropie relative dans l'optimisation mathématique.
Explore les conditions KKT dans l'optimisation convexe, couvrant les cônes doubles, les propriétés, les inégalités généralisées et les conditions d'optimisation.
Couvre les bases de l'optimisation convexe, y compris les problèmes mathématiques, les minimiseurs et les concepts de solution, en mettant l'accent sur des méthodes efficaces et des applications pratiques.
Explore la théorie et les applications de l'optimisation convexe, couvrant des sujets tels que la fonction log-déterminante, les transformations affines et l'entropie relative.
Explore les fonctions convexes, y compris la convexité, les transformations, les exemples, la minimisation, l'intuition géométrique, le lemme de Schur, la fonction de distance, la fonction de perspective et l'entropie relative.
Introduit l'optimisation convexe, couvrant les ensembles convexes, les concepts de solution et les méthodes numériques efficaces en optimisation mathématique.
Introduit la conjugaison Fenchel, explorant ses propriétés, exemples et applications dans les problèmes d'optimisation non lisses et les formulations minimax.