Couvre la détection et la correction des erreurs de paramètres dans les réseaux électriques, en mettant l'accent sur les propriétés statistiques, l'identification des erreurs, l'efficacité de calcul, l'analyse de sensibilité et l'estimation robuste de l'état.
Explore l'estimation ponctuelle dans les statistiques, en discutant du biais, de la variance, de l'erreur quadratique moyenne et de la cohérence des estimateurs.
Explore la méthode des moments, le compromis biais-variance, la cohérence, le principe de plug-in et le principe de vraisemblance dans lestimation de point.
Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Plonge dans l'homogénéisation dans les matériaux composites, en dérivant des limites rigoureuses et en discutant des paramètres statistiques et des microstructures.
Explore l'estimation statistique, comparant les estimateurs basés sur la moyenne et la variance, et plongeant dans l'erreur carrée moyenne et Cramér-Rao lié.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Introduit une estimation de la probabilité maximale pour l'estimation des paramètres statistiques, couvrant le biais, la variance et l'erreur carrée moyenne.