Explore les géométries non euclides, hyperboliques et sphériques, défiant la géométrie traditionnelle euclidienne avec des implications pour les mathématiques modernes.
Présente les concepts fondamentaux de la géométrie euclidienne et les éléments d'Euclid, explorant le contexte historique, les propositions clés et les postulats.
Présente des éléments euclidiens, explore l'unicité de l'infini, des lignes parallèles et différentes géométries comme l'euclidienne, hyperbolique et sphérique.
Explore les opérations géométriques comme l'inversion, les cercles orthogonaux, et la duplication cube, mettant l'accent sur la signification historique et les méthodes de construction modernes.
Explore les géométries non euclides, y compris la géométrie hyperbolique et le modèle tractricoïde, défiant les principes euclidiens et introduisant la géométrie projective.