Couvre l'analyse des erreurs, la stabilité et le pas de temps adaptatif dans les méthodes numériques, y compris l'ordre de convergence et les points d'équilibre.
Explore les valeurs propres, les vecteurs propres et les méthodes de résolution de systèmes linéaires en mettant l'accent sur les erreurs d'arrondi et les matrices de préconditionnement.
Fournit un examen des concepts d'algèbre linéaire cruciaux pour l'optimisation convexe, couvrant des sujets tels que les normes vectorielles, les valeurs propres et les matrices semi-définies positives.
Discute de la rétroaction de l'évaluation, de la convergence, de l'analyse des erreurs et des étapes temporelles adaptatives dans les simulations physiques.
Explore les méthodes numériques itératives pour résoudre les équations, en mettant l'accent sur les critères de convergence, les erreurs et l'impact des valeurs de départ.