Explore les méthodes de différenciation et d'intégration numériques, en mettant l'accent sur la précision des différences finies dans le calcul des dérivées et des intégrales.
Déplacez-vous dans des modèles hydrodynamiques uniformément précis pour les équations cinétiques utilisant l'apprentissage par machine, couvrant l'équation de Boltzmann, les méthodes de moment et les résultats numériques.
Discute de la rétroaction de l'évaluation, de la convergence, de l'analyse des erreurs et des étapes temporelles adaptatives dans les simulations physiques.
Explique les grilles de différence finie pour calculer les solutions de membranes élastiques à l'aide de l'équation et des méthodes numériques de Laplace.
Explore explicitement les méthodes de Runge-Kutta stabilisées et leur application aux problèmes inverses bayésiens, couvrant l'optimisation, l'échantillonnage et les expériences numériques.