Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Explique l'estimation par l'erreur moyenne au carré et l'information de Fisher dans le contexte des filtres adaptatifs et des distributions exponentiées.
Explore l'ergonomie et la distribution stationnaire dans les chaînes Markov, en mettant l'accent sur les propriétés de convergence et les distributions uniques.
Explore l'ergodicité géométrique dans les chaînes de Markov et le biais et la variance des estimateurs, en mettant en évidence la quantification des pertes d'efficacité.
Explore l'estimation de la variance, la création d'estimateurs personnels, la correction du biais et la compréhension de l'erreur carrée moyenne dans l'analyse statistique.
Introduit des modèles de Markov cachés, expliquant les problèmes de base et les algorithmes comme Forward-Backward, Viterbi et Baum-Welch, en mettant laccent sur lattente-Maximisation.