Explore les copules dans les statistiques multivariées, couvrant les propriétés, les erreurs et les applications dans la modélisation des structures de dépendance.
Introduit l'analyse des composantes principales, en mettant l'accent sur la maximisation de la variance dans les combinaisons linéaires pour résumer efficacement les données.
Couvre les statistiques descriptives, les tests d'hypothèses et l'analyse de corrélation avec diverses distributions de probabilités et des statistiques robustes.
Couvre les copules, le théorème de Sklar, les méta distributions et diverses mesures de dépendance comme les corrélations de rang et les coefficients de dépendance de la queue.