Couvre les récipients à pression linéaires et les bases de la géométrie différentielle des surfaces, y compris les vecteurs de base covariants et contravariants.
Discute de la différenciation des fonctions multivariables et des transformations de coordonnées, y compris les coordonnées polaires et cylindriques, ainsi que de l'opérateur laplacien et de ses applications.
Couvre les systèmes de coordonnées accélérés et inertiels, jacobiens, les éléments de volume, les dérivés covariants, les symboles Christoffel, le cas Lorentz et les propriétés tenseurs métriques.
Explore les gradients de calcul sur les collecteurs Riemanniens à travers des extensions et des rétractions, mettant l'accent sur les projecteurs orthogonaux et les extensions lisses.