Couvre les méthodes numériques pour résoudre les problèmes de valeurs limites en utilisant des méthodes de différence finie, de FFT et d'éléments finis.
Explore la résolution du problème Poisson en utilisant la transformée de Fourier, en discutant des termes sources, des conditions aux limites et de l'unicité de la solution.
Explore les espaces de distribution et d'interpolation, les opérateurs différentiels, la transformée de Fourier, l'espace de Schwartz, les solutions fondamentales, la transformée de Farrier et la continuité uniforme.
Explore les propriétés spectrales des systèmes illimités et bornés en utilisant les méthodes de Fourier et souligne l'importance de choisir la représentation correcte pour différentes conditions aux limites.
Couvre les méthodes numériques pour résoudre les problèmes de valeur limite, y compris les applications avec la transformée de Fourier rapide (FFT) et les données de débruitage.
Explore la résolution des équations différentielles à l'aide de données périodiques à l'aide de la série de Fourier et approfondit l'équation de la chaleur dans R.