Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.
AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.
Discute des arbres de régression, des méthodes d'ensemble et de leurs applications dans la prévision des prix des voitures d'occasion et des rendements des stocks.
Explore le surajustement dans la régression polynomiale, en soulignant l'importance de la généralisation dans l'apprentissage automatique et les statistiques.
Couvre la régression linéaire, la régularisation, les problèmes inverses, la tomographie par rayons X, la reconstruction d'images, l'inférence de données et l'intensité du détecteur.
Explore la méthode de classification la plus proche du voisin, en discutant de ses limites dans les espaces de grande dimension et de l'importance de la corrélation spatiale pour des prédictions efficaces.
Examine la généralisation des classificateurs ImageNet, les applications critiques pour la sécurité, le surajustement et la fiabilité des modèles d'apprentissage automatique.
Explore les tests de spécification, l'apprentissage automatique, le surajustement, la régularisation, les tests de prédiction et la sélection de variables.