Explore l'inférence statistique pour les modèles linéaires, couvrant l'ajustement du modèle, l'estimation des paramètres et la décomposition de la variance.
Fournit un aperçu des modèles linéaires généralisés, en mettant l'accent sur les modèles de régression logistique et de Poisson, et leur mise en oeuvre dans R.
Discute des méthodes d'estimation en probabilité et en statistiques, en se concentrant sur l'estimation du maximum de vraisemblance et les intervalles de confiance.
Explore la régression logistique pour les variables de réponse binaire, couvrant des sujets tels que l'interprétation du rapport de cotes et l'ajustement du modèle.
Il explore la construction de régions de confiance, les tests d'hypothèse inversés et la méthode pivot, en soulignant l'importance des méthodes de probabilité dans l'inférence statistique.