Explore la stabilité des équations différentielles ordinaires, en se concentrant sur la dépendance des solutions, les données critiques, la linéarisation et le contrôle des systèmes non linéaires.
Explore les contraintes multi-points dans l'analyse structurelle non linéaire, couvrant des méthodes telles que Master-Slave Elimination et des exemples numériques de petits cadres avec des contraintes imposées.
Couvre les principes fondamentaux de la théorie du contrôle optimal, en se concentrant sur la définition des OCP, l'existence de solutions, les critères de performance, les contraintes physiques et le principe d'optimalité.
Explore l'apprentissage sécuritaire dans les systèmes de contrôle automatique, couvrant les défis, le contrôle sensible aux risques et les filtres de sécurité prédictifs.