Vecteur unitairevignette|Deux vecteurs unitaires dans un espace vectoriel normé. Dans un espace vectoriel normé (réel ou complexe) E, un vecteur unitaire est un vecteur dont la norme est égale à 1. Si le corps des scalaires est R, deux vecteurs unitaires v et w sont colinéaires si et seulement si v = w ou v = –w. Si le corps des scalaires est C, et si v est un vecteur unitaire de E, alors les vecteurs unitaires colinéaires à v sont αv où α est un complexe de module 1. Les vecteurs unitaires permettent de définir la direction et le sens d'un vecteur non nul de E.
Espace préhilbertienEn mathématiques, un espace préhilbertien est défini comme un espace vectoriel réel ou complexe muni d'un produit scalaire. Cette notion généralise celles d'espace euclidien ou hermitien dans le cas d'une dimension quelconque, tout en conservant certaines bonnes propriétés géométriques des espaces de dimension finie grâce aux propriétés du produit scalaire, mais en perdant un atout de taille : un espace préhilbertien de dimension infinie n'est pas nécessairement complet. On peut cependant le compléter, pour obtenir un espace de Hilbert.
Analyse vectorielleL'analyse vectorielle est une branche des mathématiques qui étudie les champs de scalaires et de vecteurs suffisamment réguliers des espaces euclidiens, c'est-à-dire les applications différentiables d'un ouvert d'un espace euclidien à valeurs respectivement dans et dans . Du point de vue du mathématicien, l'analyse vectorielle est donc une branche de la géométrie différentielle. Cette dernière inclut l'analyse tensorielle qui apporte des outils plus puissants et une analyse plus concise entre autres des champs de vecteurs.
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Groupe orthogonalEn mathématiques, le groupe orthogonal réel de degré n, noté O(n), est le groupe des transformations géométriques d'un espace Euclidien de dimension n qui préservent les distances (isométries) et le point origine de l'espace. Formellement, on introduit le groupe orthogonal d'une forme quadratique q sur E, espace vectoriel sur un corps commutatif K, comme le sous-groupe du groupe linéaire GL(E) constitué des automorphismes f de E qui laissent q invariante : pour tout vecteur x de E.
Dimension d'un espace vectorielvignette|espace à zéro dimension. En algèbre linéaire, la dimension de Hamel ou simplement la dimension est un invariant associé à tout espace vectoriel E sur un corps K. La dimension de E est le cardinal commun à toutes ses bases. Ce nombre est noté dimK(E) (lire « dimension de E sur K ») ou dim(E) (s'il n'y a aucune confusion sur le corps K des scalaires). Si E admet une partie génératrice finie, alors sa dimension est finie et elle vaut le nombre de vecteurs constituant une base de E.
Démonstration (logique et mathématiques)vignette| : un des plus vieux fragments des Éléments d'Euclide qui montre une démonstration mathématique. En mathématiques et en logique, une démonstration est un ensemble structuré d'étapes correctes de raisonnement. Dans une démonstration, chaque étape est soit un axiome (un fait acquis), soit l'application d'une règle qui permet d'affirmer qu'une proposition, la conclusion, est une conséquence logique d'une ou plusieurs autres propositions, les prémisses de la règle.
Groupe algébriqueEn géométrie algébrique, la notion de groupe algébrique est un équivalent des groupes de Lie en géométrie différentielle ou complexe. Un groupe algébrique est une variété algébrique munie d'une loi de groupe compatible avec sa structure de variété algébrique. Un groupe algébrique sur un corps (commutatif) K est une variété algébrique sur munie : d'un morphisme de K-variétés algébriques (appelé aussi multiplication) .
Rang (algèbre linéaire)En algèbre linéaire : le rang d'une famille de vecteurs est la dimension du sous-espace vectoriel engendré par cette famille. Par exemple, pour une famille de vecteurs linéairement indépendants, son rang est le nombre de vecteurs ; le rang d'une application linéaire de dans est la dimension de son , qui est un sous-espace vectoriel de . Le théorème du rang relie la dimension de , la dimension du noyau de et le rang de ; le rang d'une matrice est le rang de l'application linéaire qu'elle représente, ou encore le rang de la famille de ses vecteurs colonnes ; le rang d'un système d'équations linéaires est le nombre d'équations que compte tout système échelonné équivalent.
Théorie de la démonstrationLa théorie de la démonstration, aussi connue sous le nom de théorie de la preuve (de l'anglais proof theory), est une branche de la logique mathématique. Elle a été fondée par David Hilbert au début du . Hilbert a proposé cette nouvelle discipline mathématique lors de son célèbre exposé au congrès international des mathématiciens en 1900 avec pour objectif de démontrer la cohérence des mathématiques.