Opérateur pseudo-différentielEn analyse mathématique, un opérateur pseudo-différentiel est une extension du concept familier d'opérateur différentiel, permettant notamment l'inclusion d'ordres de dérivation non entiers. Ces opérateurs pseudo-différentiels sont abondamment utilisés dans la théorie des équations aux dérivées partielles et en théorie quantique des champs. On reprend ci-dessous les notations introduites dans l'article opérateur différentiel. Rappelons qu'un opérateur différentiel linéaire d'ordre s'écrit : où les , appelées coefficients de l'opérateur , sont des fonctions des variables d'espace .
Opérateur laplacienL'opérateur laplacien, ou simplement le laplacien, est l'opérateur différentiel défini par l'application de l'opérateur gradient suivie de l'application de l'opérateur divergence : Intuitivement, il combine et relie la description statique d'un champ (décrit par son gradient) aux effets dynamiques (la divergence) de ce champ dans l'espace et le temps. C'est l'exemple le plus simple et le plus répandu d'opérateur elliptique.
Analyse complexeL'analyse complexe est un domaine des mathématiques traitant des fonctions à valeurs complexes (ou, plus généralement, à valeurs dans un C-espace vectoriel) et qui sont dérivables par rapport à une ou plusieurs variables complexes. Les fonctions dérivables sur un ouvert du plan complexe sont appelées holomorphes et satisfont de nombreuses propriétés plus fortes que celles vérifiées par les fonctions dérivables en analyse réelle. Entre autres, toute fonction holomorphe est analytique et vérifie le principe du maximum.
Espace précompactEn topologie, une branche des mathématiques, un espace métrique E est précompact si, pour tout ε > 0, on peut recouvrir E par un nombre fini de boules de rayon ε. La propriété principale est qu'un espace métrique est compact si et seulement s'il est précompact et complet. La notion de précompacité et ses propriétés se généralisent aux espaces uniformes. Soit E un espace métrique. Si l'une des trois propriétés suivantes est vérifiée, alors toutes trois le sont et E est dit précompact.
Fourier analysisIn mathematics, Fourier analysis (ˈfʊrieɪ,_-iər) is the study of the way general functions may be represented or approximated by sums of simpler trigonometric functions. Fourier analysis grew from the study of Fourier series, and is named after Joseph Fourier, who showed that representing a function as a sum of trigonometric functions greatly simplifies the study of heat transfer. The subject of Fourier analysis encompasses a vast spectrum of mathematics.
Fonction (mathématiques)vignette|Diagramme de calcul pour la fonction En mathématiques, une fonction permet de définir un résultat (le plus souvent numérique) pour chaque valeur d’un ensemble appelé domaine. Ce résultat peut être obtenu par une suite de calculs arithmétiques ou par une liste de valeurs, notamment dans le cas de relevé de mesures physiques, ou encore par d’autres procédés comme les résolutions d’équations ou les passages à la limite. Le calcul effectif du résultat ou son approximation repose éventuellement sur l’élaboration de fonction informatique.
Fonction localement intégrableEn mathématiques, plus précisément en théorie de l'intégration au sens de Lebesgue, une fonction à valeurs complexes définie sur un ouvert Ω de R est dite localement intégrable si sa restriction à tout compact de Ω est intégrable pour la mesure de Lebesgue λ. L'espace vectoriel de ces fonctions est noté L(Ω) et son quotient par le sous-espace des fonctions nulles presque partout est noté L(Ω).
Differential algebraIn mathematics, differential algebra is, broadly speaking, the area of mathematics consisting in the study of differential equations and differential operators as algebraic objects in view of deriving properties of differential equations and operators without computing the solutions, similarly as polynomial algebras are used for the study of algebraic varieties, which are solution sets of systems of polynomial equations. Weyl algebras and Lie algebras may be considered as belonging to differential algebra.
Fonction à variation bornéeEn analyse, une fonction est dite à variation bornée quand elle vérifie une certaine condition de régularité. Cette condition a été introduite en 1881 par le mathématicien Camille Jordan pour étendre le théorème de Dirichlet sur la convergence des séries de Fourier. Soit f une fonction définie sur un ensemble totalement ordonné T et à valeurs dans un espace métrique (E, d). Pour toute subdivision σ = (x, x, ...
Opérateur elliptiqueEn mathématiques, un opérateur elliptique est un opérateur différentiel qui généralise l'opérateur laplacien. Les opérateurs elliptiques sont définis via la condition que les coefficients devant les termes de dérivation de plus haut degré soient positifs, ce qui est équivalent au fait qu'il n'y a pas de caractéristique réelle. Les opérateurs elliptiques jouent un rôle crucial en théorie du potentiel et apparaissent fréquemment en électrostatique et en mécanique des milieux continus.