Motion simulatorA motion simulator or motion platform is a mechanism that creates the feelings of being in a real motion environment. In a simulator, the movement is synchronised with a visual display of the outside world (OTW) scene. Motion platforms can provide movement in all of the six degrees of freedom (DOF) that can be experienced by an object that is free to move, such as an aircraft or spacecraft:. These are the three rotational degrees of freedom (roll, pitch, yaw) and three translational or linear degrees of freedom (surge, heave, sway).
Vecteur positionEn géométrie, le vecteur position, ou rayon vecteur, est le vecteur qui sert à indiquer la position d'un point par rapport à un repère. L'origine du vecteur se situe à l'origine fixe du repère et son autre extrémité à la position du point. Si l'on note M cette position et O l'origine, le vecteur position se note . On le note aussi ou . En physique, le vecteur déplacement d'un point matériel ou d'un objet est le vecteur reliant une ancienne position à une nouvelle, donc le vecteur position final moins le vecteur position initial.
Théorie du contrôleEn mathématiques et en sciences de l'ingénieur, la théorie du contrôle a comme objet l'étude du comportement de systèmes dynamiques paramétrés en fonction des trajectoires de leurs paramètres. On se place dans un ensemble, l'espace d'état sur lequel on définit une dynamique, c'est-à-dire une loi mathématiques caractérisant l'évolution de variables (dites variables d'état) au sein de cet ensemble. Le déroulement du temps est modélisé par un entier .
Full motion racing simulatorA full motion racing simulator, sometimes called a full motion sim rig, is a motion simulator that is purposed for racing, and must provide motion simulation in all six degrees of freedom, as defined by the aviation simulator industry many decades ago. The six degrees of freedom coincide with Earth physics, and are commonly referred to (in both aircraft, watercraft and other vehicles) as: The three translational movements: Surge, sway and heave (front/back motion, side-to-side motion and up/down motion, respectively) The three rotational movements: Roll, pitch, and yaw (rotation around the normal, transverse and longitudinal axes, respectively) Simulations of these six degrees of freedom are achieved by 2 fundamentally different approaches.
Contrôle en boucle ferméeEn régulation, un contrôle en boucle fermée est une forme de contrôle d'un système qui intègre la réaction de ce système (appelée rétroaction ou en anglais, ). Un exemple est un régulateur de vitesse présent sur les automobiles. L'opposé du contrôle en boucle fermée est le contrôle en boucle ouverte, qui ne prend pas en compte de rétroaction. Voici un exemple général présentant la fonction de transfert d'un système en boucle fermée. Asservissement (automatique) Régulateur PID Critère de Nyquist Catégorie:A
Capture de mouvementLa capture de mouvement (motion capture en anglais, parfois abrégé en mocap) est une technique permettant d'enregistrer les positions et rotations d'objets ou de membres d'êtres vivants, pour en contrôler une contrepartie virtuelle sur ordinateur (caméra, modèle 3D, ou avatar). Une restitution visuelle de ces mouvements en temps réel est faite via le moteur de rendu 3D de l'application interfacée avec le matériel utilisé qui peut les stocker dans un fichier d'animation de type BVH pour être traités ultérieurement dans un logiciel 3D classique (Maya, 3dsMax, XSI, Cinema4d, etc.
Dimension de HausdorffEn mathématiques, et plus précisément en topologie, la dimension de Hausdorff d'un espace métrique (X,d) est un nombre réel positif ou nul, éventuellement l'infini. Introduite en 1918 par le mathématicien Felix Hausdorff, elle a été développée par Abram Besicovitch, c'est pourquoi elle est parfois appelée dimension de Hausdorff-Besicovitch. L'exemple le plus simple est l'espace euclidien de dimension (au sens des espaces vectoriels) égale à n (ou plus généralement un espace vectoriel réel de dimension n muni d'une distance associée à une norme) : sa dimension de Hausdorff d est aussi égale à n, dimension de l'espace vectoriel.
DimensionLe terme dimension, du latin dimensio « action de mesurer », désigne d’abord chacune des grandeurs d’un objet : longueur, largeur et profondeur, épaisseur ou hauteur, ou encore son diamètre si c'est une pièce de révolution. L’acception a dérivé de deux façons différentes en physique et en mathématiques. En physique, la dimension qualifie une grandeur indépendamment de son unité de mesure, tandis qu’en mathématiques, la notion de dimension correspond au nombre de grandeurs nécessaires pour identifier un objet, avec des définitions spécifiques selon le type d’objet (algébrique, topologique ou combinatoire notamment).
Dimension fractaleEn géométrie fractale, la dimension fractale, D, est une grandeur qui a vocation à traduire la façon qu'a un ensemble fractal de remplir l'espace, à toutes les échelles. Dans le cas des fractales, elle est non entière et supérieure à la dimension topologique. Ce terme est un terme générique qui recouvre plusieurs définitions. Chacune peut donner des résultats différents selon l'ensemble considéré, il est donc essentiel de mentionner la définition utilisée lorsqu'on valorise la dimension fractale d'un ensemble.
Temps newtonienEn physique, le temps newtonien définit un temps absolu qui est le même en tout point de l'Univers et indifférent au mouvement. Il a été introduit par Isaac Newton en 1687 dans ses Principia Mathematica. En 1905, Albert Einstein démontre que le temps physique n'est pas newtonien. L'idée essentielle est que le temps newtonien n'est plus un paramètre unicursal. Cela signifie que changer d'échelle de grandeur temps par une fonction t' = f(t) ne demande pour la vitesse qu'un changement V' = V/f'(t), ce qui est simplement l'expression naturelle d'un changement d'unités.