Grade universitaireUn grade universitaire est un degré dans la hiérarchie des études supérieures. Il est attesté par un diplôme délivré par les universités et autres institutions d’études supérieures. Les grades sont conférés aux titulaires de diplômes de l'enseignement supérieur délivrés par les universités et les établissements habilités. Les grades peuvent être également conférés aux titulaires de certains diplômes propres à des établissements. À ces grades peuvent être associés un certain nombre de droits et de privilèges, pouvant varier suivant les disciplines et les finalités.
Base de GröbnerEn mathématiques, une base de Gröbner (ou base standard, ou base de Buchberger) d'un idéal I de l'anneau de polynômes K[X, ..., X] est un ensemble de générateurs de cet idéal, vérifiant certaines propriétés supplémentaires. Cette notion a été introduite dans les années 1960, indépendamment par Heisuke Hironaka et Bruno Buchberger, qui lui a donné le nom de son directeur de thèse Wolfgang Gröbner. Les bases de Gröbner ont le grand avantage de ramener l'étude des idéaux polynomiaux à l'étude des idéaux monomiaux (c'est-à-dire formés de monômes), plus faciles à appréhender.
Householder transformationIn linear algebra, a Householder transformation (also known as a Householder reflection or elementary reflector) is a linear transformation that describes a reflection about a plane or hyperplane containing the origin. The Householder transformation was used in a 1958 paper by Alston Scott Householder. Its analogue over general inner product spaces is the Householder operator. The reflection hyperplane can be defined by its normal vector, a unit vector (a vector with length ) that is orthogonal to the hyperplane.
Polynôme de TchebychevEn mathématiques, un polynôme de Tchebychev est un terme de l'une des deux suites de polynômes orthogonaux particulières reliées à la formule de Moivre. Les polynômes de Tchebychev sont nommés ainsi en l'honneur du mathématicien russe Pafnouti Lvovitch Tchebychev. Il existe deux suites de polynômes de Tchebychev, l'une nommée polynômes de Tchebychev de première espèce et notée T et l'autre nommée polynômes de Tchebychev de seconde espèce et notée U (dans les deux cas, l'entier naturel n correspond au degré).
Matrice inversibleEn mathématiques et plus particulièrement en algèbre linéaire, une matrice inversible (ou régulière ou encore non singulière) est une matrice carrée A pour laquelle il existe une matrice B de même taille n avec laquelle les produits AB et BA sont égaux à la matrice identité. Dans ce cas la matrice B est unique, appelée matrice inverse de A et notée B = A. Cette définition correspond à celle d’élément inversible pour la multiplication dans l’anneau des matrices carrées associé.
Matrix decompositionIn the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems. In numerical analysis, different decompositions are used to implement efficient matrix algorithms. For instance, when solving a system of linear equations , the matrix A can be decomposed via the LU decomposition.
Polynôme de LaguerreEn mathématiques, les polynômes de Laguerre, nommés d'après Edmond Laguerre, sont les solutions normalisées de l'équation de Laguerre : qui est une équation différentielle linéaire homogène d'ordre 2 et se réécrit sous la forme de Sturm-Liouville : Cette équation a des solutions non singulières seulement si n est un entier positif. Les solutions L forment une suite de polynômes orthogonaux dans L (R, edx), et la normalisation se fait en leur imposant d'être de norme 1, donc de former une famille orthonormale.
Polynôme de Legendrethumb|upright=1.5|Polynômes de Legendre En mathématiques et en physique théorique, les polynômes de Legendre constituent l'exemple le plus simple d'une suite de polynômes orthogonaux. Ce sont des solutions polynomiales P(x), sur l'intervalle x ∈ [–1, 1], de l'équation différentielle de Legendre : dans le cas particulier où le paramètre n est un entier naturel. De façon équivalente, les polynômes de Legendre sont les fonctions propres de l'endomorphisme de R[X] défini par : pour les valeurs propres .
Matrice d'une application linéaireEn algèbre linéaire, la matrice d'une application linéaire est une matrice de scalaires qui permet de représenter une application linéaire entre deux espaces vectoriels de dimensions finies, étant donné le choix d'une base pour chacun d'eux. Soient : E et F deux espaces vectoriels sur un corps commutatif K, de dimensions respectives n et m ; B = (e, ... , e) une base de E, C une base de F ; φ une application de E dans F.
Management des opérationsLe management des opérations est un domaine du management dont le but est de superviser la conception et le contrôle du processus de production et la refonte des opérations commerciales dans la production de biens ou de services. Il implique la responsabilité de veiller à ce que les opérations commerciales soient efficaces, étant donné la présence de contraintes en termes d'utilisation de ressources. Ceci est généralement requis si une entreprise veut satisfaire les exigences du client.