Géométrie riemanniennevignette|275px|L'étude de la forme de l'univers est une adaptation des idées et méthodes de la géométrie riemannienne La géométrie riemannienne est une branche de la géométrie différentielle nommée en l'honneur du mathématicien Bernhard Riemann, qui introduisit les concepts fondateurs de variété géométrique et de courbure. Il s'agit de surfaces ou d'objets de plus grande dimension sur lesquels existent des notions d'angle et de longueur, généralisant la géométrie traditionnelle qui se limitait à l'espace euclidien.
Variété riemannienneEn mathématiques, et plus précisément en géométrie, la variété riemannienne est l'objet de base étudié en géométrie riemannienne. Il s'agit d'une variété, c'est-à-dire un espace courbe généralisant les courbes (de dimension 1) ou les surfaces (de dimension 2) à une dimension n quelconque, et sur laquelle il est possible d'effectuer des calculs de longueur. En termes techniques, une variété riemannienne est une variété différentielle munie d'une structure supplémentaire appelée métrique riemannienne permettant de calculer le produit scalaire de deux vecteurs tangents à la variété en un même point.
Carte géographiquethumb|right|Esquisse explicative de la plus ancienne carte géographique connue (époque sumérienne, env. 2500 av. J.-C.) vignette|250px|Carte mondiale datant de 1154 réalisée par Al Idrissi pour Roger II de Sicile (ici retournée à ). thumb|right|upright=1.3|Tabula Rogeriana, dessiné par Muhammad al-Idrisi pour Roger II de Sicile (ici retournée à ). Une carte géographique est une représentation d'un espace géographique. Elle met en valeur l'étendue de cet espace, sa localisation relative par rapport aux espaces voisins, ainsi que la localisation des éléments qu'il contient.
Géométrie différentielle des surfacesEn mathématiques, la géométrie différentielle des surfaces est la branche de la géométrie différentielle qui traite des surfaces (les objets géométriques de l'espace usuel E3, ou leur généralisation que sont les variétés de dimension 2), munies éventuellement de structures supplémentaires, le plus souvent une métrique riemannienne. Outre les surfaces classiques de la géométrie euclidienne (sphères, cônes, cylindres, etc.
Curvature of Riemannian manifoldsIn mathematics, specifically differential geometry, the infinitesimal geometry of Riemannian manifolds with dimension greater than 2 is too complicated to be described by a single number at a given point. Riemann introduced an abstract and rigorous way to define curvature for these manifolds, now known as the Riemann curvature tensor. Similar notions have found applications everywhere in differential geometry of surfaces and other objects. The curvature of a pseudo-Riemannian manifold can be expressed in the same way with only slight modifications.
Tenseur de Riemannvignette|Motivation de la courbure de Riemann pour les variétés sphériques. En géométrie riemannienne, le tenseur de courbure de Riemann-Christoffel est la façon la plus courante d'exprimer la courbure des variétés riemanniennes, ou plus généralement d'une variété disposant d'une connexion affine, avec ou sans torsion. Soit deux géodésiques d'un espace courbe, parallèles au voisinage d'un point P. Le parallélisme ne sera pas nécessairement conservé en d'autres points de l'espace.
Map layoutMap layout, also called map composition or (cartographic) page layout, is the part of cartographic design that involves assembling various map elements on a page. This may include the map image itself, along with titles, legends, scale indicators, inset maps, and other elements. It follows principles similar to page layout in graphic design, such as balance, gestalt, and visual hierarchy. The term map composition is also used for the assembling of features and symbols within the map image itself, which can cause some confusion; these two processes share a few common design principles but are distinct procedures in practice.
Géométrie conformeEn mathématiques, la géométrie conforme est l'étude de l'ensemble des transformations préservant l'angle (conformes) sur un espace. Dans un espace réel de dimension 2, la géométrie conforme est précisément la géométrie des surfaces de Riemann. Dans des espaces de dimension supérieure à 2, la géométrie conforme peut se référer soit à l'étude des transformations conformes de ce qu'on appelle les "espaces plats" (tels que les espaces euclidiens ou les sphères), soit à l'étude des variétés conformes qui sont des variétés riemanniennes ou pseudo-riemanniennes.
Théorème de plongement de NashEn géométrie différentielle, le théorème de plongement de Nash, dû au mathématicien John Forbes Nash, affirme que toute variété riemannienne peut être plongée de manière isométrique dans un espace euclidien. « De manière isométrique » veut dire « conservant la longueur des courbes ». Une conséquence de ce théorème est que toute variété riemannienne peut être vue comme une sous-variété d'un espace euclidien. Il existe deux théorèmes de plongement de Nash : Le premier (1954), portant sur les variétés de classe C1.
PlanisphèreUn planisphère est une représentation plane de la surface du globe terrestre. La sphère étant une surface courbe, les formes et les tailles des continents, mers, pays, etc ne pourront pas être préservés. Le terme mappemonde est, dans son sens strict, une carte représentant toutes les parties du globe terrestre divisé en deux hémisphères enfermés chacun dans un grand cercle. La création d’un planisphère demande des informations générales sur la planète, notamment les formes et positions relatives des océans ou des continents.