Computational anatomyComputational anatomy is an interdisciplinary field of biology focused on quantitative investigation and modelling of anatomical shapes variability. It involves the development and application of mathematical, statistical and data-analytical methods for modelling and simulation of biological structures. The field is broadly defined and includes foundations in anatomy, applied mathematics and pure mathematics, machine learning, computational mechanics, computational science, biological imaging, neuroscience, physics, probability, and statistics; it also has strong connections with fluid mechanics and geometric mechanics.
Élévateur à grainvignette|Un élévateur à grain à Rotterdam. vignette|Un élevateur à grain abandonné à dans l'Oblast de Kirov en Russie. Mai 2019. Un élévateur à grain est une structure contenant un élévateur à godets ou un convoyeur pneumatique qui ramasse le grain d'un niveau inférieur et le dépose à un niveau supérieur, typiquement dans un silo de stockage des céréales. Il sert à augmenter la capacité de transport autant que celle d'intervention sur les marchés céréaliers. Selon l'utilisation du terme, il peut aussi décrire l'installation dans son ensemble.
MIMO (télécommunications)Multiple-Input Multiple-Output ou MIMO (« entrées multiples, sorties multiples » en français) est une technique de multiplexage utilisée dans les radars, réseaux sans fil et les réseaux mobiles permettant des transferts de données à plus longue portée et avec un débit plus élevé qu’avec des antennes utilisant la technique SISO (Single-Input Single-Output). Alors que les anciens réseaux Wi-Fi ou les réseaux GSM standards utilisent une seule antenne au niveau de l'émetteur et du récepteur, MIMO utilise plusieurs antennes tant au niveau de l'émetteur (par exemple un routeur) que du récepteur (par exemple un PC portable ou un smartphone).
Sable bitumineuxUn sable bitumineux (ou bitumeux) est un mélange de bitume brut, qui est une forme semi-solide de pétrole brut, de sable, d'argile minérale et d'eau. En d’autres mots, c’est un sable enrobé d’une couche d’eau sur laquelle se dépose la pellicule de bitume. Plus la pellicule de bitume est épaisse, meilleurs sont les sables bitumineux en termes de quantité de pétrole extractible. Après extraction et transformation des sables bitumineux, on obtient le bitume, qui est un mélange d’hydrocarbures sous forme solide, ou liquide dense, épais et visqueux.
Méthode des éléments finisEn analyse numérique, la méthode des éléments finis (MEF, ou FEM pour finite element method en anglais) est utilisée pour résoudre numériquement des équations aux dérivées partielles. Celles-ci peuvent par exemple représenter analytiquement le comportement dynamique de certains systèmes physiques (mécaniques, thermodynamiques, acoustiques).
Spectral methodSpectral methods are a class of techniques used in applied mathematics and scientific computing to numerically solve certain differential equations. The idea is to write the solution of the differential equation as a sum of certain "basis functions" (for example, as a Fourier series which is a sum of sinusoids) and then to choose the coefficients in the sum in order to satisfy the differential equation as well as possible.
Équation aux dérivées partiellesEn mathématiques, plus précisément en calcul différentiel, une équation aux dérivées partielles (parfois appelée équation différentielle partielle et abrégée en EDP) est une équation différentielle dont les solutions sont les fonctions inconnues dépendant de plusieurs variables vérifiant certaines conditions concernant leurs dérivées partielles. Une EDP a souvent de très nombreuses solutions, les conditions étant moins strictes que dans le cas d'une équation différentielle ordinaire à une seule variable ; les problèmes comportent souvent des conditions aux limites qui restreignent l'ensemble des solutions.
Méthode des différences finiesEn analyse numérique, la méthode des différences finies est une technique courante de recherche de solutions approchées d'équations aux dérivées partielles qui consiste à résoudre un système de relations (schéma numérique) liant les valeurs des fonctions inconnues en certains points suffisamment proches les uns des autres. Cette méthode apparaît comme étant la plus simple à mettre en œuvre car elle procède en deux étapes : d'une part la discrétisation par différences finies des opérateurs de dérivation/différentiation, d'autre part la convergence du schéma numérique ainsi obtenu lorsque la distance entre les points diminue.