Fonction trigonométriquethumb|upright=1.35|Toutes les valeurs des fonctions trigonométriques d'un angle θ peuvent être représentées géométriquement. En mathématiques, les fonctions trigonométriques permettent de relier les longueurs des côtés d'un triangle en fonction de la mesure des angles aux sommets. Plus généralement, ces fonctions sont importantes pour étudier les triangles et les polygones, les cercles (on les appelle alors fonctions circulaires) et modéliser des phénomènes périodiques.
Fonction thêtaEn mathématiques, on appelle fonctions thêta certaines fonctions spéciales d'une ou de plusieurs variables complexes. Elles apparaissent dans plusieurs domaines, comme l'étude des variétés abéliennes, des espaces de modules, et les formes quadratiques. Elles ont aussi des applications à la théorie des solitons. Leurs généralisations en algèbre extérieure apparaissent dans la théorie quantique des champs, plus précisément dans la théorie des cordes et des D-branes.
Direct method in the calculus of variationsIn mathematics, the direct method in the calculus of variations is a general method for constructing a proof of the existence of a minimizer for a given functional, introduced by Stanisław Zaremba and David Hilbert around 1900. The method relies on methods of functional analysis and topology. As well as being used to prove the existence of a solution, direct methods may be used to compute the solution to desired accuracy. The calculus of variations deals with functionals , where is some function space and .
Forme quadratiquethumb|L'annulation d'une forme quadratique donne le cône de lumière de la relativité restreinte, son signe fait la différence entre les événements accessibles ou inaccessibles dans l'espace-temps. En mathématiques, une forme quadratique est un polynôme homogène de degré 2 avec un nombre quelconque de variables. Les formes quadratiques d'une, deux et trois variables sont données respectivement par les formules suivantes (a,b,c,d,e,f désignant des coefficients) : L'archétype de forme quadratique est la forme x + y + z sur R, qui définit la structure euclidienne et dont la racine carrée permet de calculer la norme d'un vecteur.
Exponentielle d'une matriceEn mathématiques, et plus particulièrement en analyse, l'exponentielle d'une matrice est une fonction généralisant la fonction exponentielle aux matrices et aux endomorphismes par le calcul fonctionnel. Elle fait en particulier le pont entre un groupe de Lie et son algèbre de Lie. Pour n = 1, on retrouve la définition de l'exponentielle complexe. Sauf indication contraire, X, Y désignent des matrices n × n complexes (à coefficients complexes).
Fonction elliptique de JacobiEn mathématiques, les fonctions elliptiques de Jacobi sont des fonctions elliptiques d'une grande importance historique. Introduites par Carl Gustav Jakob Jacobi vers 1830, elles ont des applications directes, par exemple dans l'équation du pendule. Elles présentent aussi des analogies avec les fonctions trigonométriques, qui sont mises en valeur par le choix des notations sn et cn, qui rappellent sin et cos. Si les fonctions elliptiques thêta de Weierstrass semblent mieux adaptées aux considérations théoriques, les problèmes physiques pratiques font plus appel aux fonctions de Jacobi.
Fonction quasi-convexeEn mathématiques, une fonction quasi-convexe est une fonction à valeurs réelles, définie sur un ensemble convexe d'un espace vectoriel réel, telle que l' de tout ensemble de la forme est convexe ou encore telle que, sur tout segment, la plus grande valeur de la fonction est atteinte à l'une des extrémités. L'opposée d'une fonction quasi-convexe est dite quasi-concave. Toute fonction convexe est quasi-convexe mais la réciproque est fausse : par exemple, toute fonction monotone sur un intervalle réel est quasi-linéaire, c'est-à-dire à la fois quasi-convexe et quasi-concave.
Fonction circulaire réciproqueLes fonctions circulaires réciproques, ou fonctions trigonométriques inverses, sont les fonctions réciproques des fonctions circulaires, pour des intervalles de définition précis. Les fonctions réciproques des fonctions sinus, cosinus, tangente, cotangente, sécante et cosécante sont appelées arc sinus, arc cosinus, arc tangente, arc cotangente, arc sécante et arc cosécante. Les fonctions circulaires réciproques servent à obtenir un angle à partir de l'une quelconque de ses lignes trigonométriques, mais aussi à expliciter les primitives de certaines fonctions.
Fonction homogènevignette|Exemple de fonction homogène de degré 1 En mathématiques, une fonction homogène est une fonction qui a un comportement d’échelle multiplicatif par rapport à son ou ses arguments : si l'argument (vectoriel au besoin) est multiplié par un scalaire, alors le résultat sera multiplié par ce scalaire porté à une certaine puissance. Soient E et F deux espaces vectoriels sur un même corps commutatif K.
Analyse convexeL'analyse convexe est la branche des mathématiques qui étudie les ensembles et les fonctions convexes. Cette théorie étend sur beaucoup d'aspects les concepts de l'algèbre linéaire et sert de boîte à outils en analyse et en analyse non lisse. Elle s'est beaucoup développée du fait de ses interactions avec l'optimisation, où elle apporte des propriétés particulières aux problèmes qui y sont étudiés. Certains voient la naissance de l'analyse convexe « moderne » dans l'invention des notions de sous-différentiel, d'application proximale et d'inf-convolution dans les années 1962-63.