Opérateur compactEn mathématiques, et plus précisément en analyse fonctionnelle, un opérateur compact est une application continue entre deux espaces vectoriels topologiques X et Y envoyant les parties bornées de X sur les parties relativement compactes de Y. Les applications linéaires compactes généralisent les applications linéaires continues de rang fini. La théorie est particulièrement intéressante pour les espaces vectoriels normés ou les espaces de Banach. En particulier, dans un espace de Banach, l'ensemble des opérateurs compacts est fermé pour la topologie forte.
Opérateur bornéEn mathématiques, la notion d'opérateur borné est un concept d'analyse fonctionnelle. Il s'agit d'une application linéaire L entre deux espaces vectoriels normés X et Y telle que l'image de la boule unité de X est une partie bornée de Y. On montre qu'ils s'identifient aux applications linéaires continues de X dans Y. L'ensemble des opérateurs bornés est muni d'une norme issue des normes de X et de Y, la norme d'opérateur. Une application linéaire L entre les espaces vectoriels normés X et Y est appelée opérateur borné quand l'ensemble est borné.
Équationvignette|upright=1.2|Robert Recorde est un précurseur pour l'écriture d'une équation. Il invente l'usage du signe = pour désigner une égalité. vignette|upright=1.2|Un système dynamique correspond à un type particulier d'équation, dont les solutions recherchées sont des fonctions. Le comportement limite est parfois complexe. Dans certains cas, il est caractérisé par une curieuse figure géométrique, appelée attracteur étrange. Une équation est, en mathématiques, une relation (en général une égalité) contenant une ou plusieurs variables.
Opérateur (physique)Un opérateur est, en mécanique quantique, une application linéaire d'un espace de Hilbert dans lui-même. Le terme est une spécialisation du concept mathématique d'opérateur. Une observable est un opérateur hermitien. En mécanique classique, le mouvement des particules (ou d'un système de particules) est complètement déterminé par le Lagrangien ou, de façon équivalente, l'Hamiltonien , une fonction des coordonnées généralisées q, vitesse généralisée et son moment conjugué : Si ou est indépendant des coordonnées généralisées , donc que et ne changent pas en fonction de , le moment conjugué de ces coordonnées sera conservé (c'est une partie du théorème de Noether, et l'invariance du mouvement en respect de la coordonnée est une symétrie).
Décomposition polaireLa décomposition polaire est un outil mathématique fondamental pour comprendre les propriétés topologiques des groupes linéaires réels et complexes. Les applications suivantes sont des homéomorphismes, et même des difféomorphismes. En particulier, toute matrice inversible réelle se décompose de façon unique en produit d'une matrice orthogonale et d'une matrice symétrique définie positive. Les applications suivantes sont surjectives mais non injectives : En particulier, toute matrice réelle se décompose en produit d'une matrice orthogonale et d'une unique matrice symétrique positive (mais pas nécessairement de façon unique).
Optimisation (mathématiques)L'optimisation est une branche des mathématiques cherchant à modéliser, à analyser et à résoudre analytiquement ou numériquement les problèmes qui consistent à minimiser ou maximiser une fonction sur un ensemble. L’optimisation joue un rôle important en recherche opérationnelle (domaine à la frontière entre l'informatique, les mathématiques et l'économie), dans les mathématiques appliquées (fondamentales pour l'industrie et l'ingénierie), en analyse et en analyse numérique, en statistique pour l’estimation du maximum de vraisemblance d’une distribution, pour la recherche de stratégies dans le cadre de la théorie des jeux, ou encore en théorie du contrôle et de la commande.
Analyse numériqueL’analyse numérique est une discipline à l'interface des mathématiques et de l'informatique. Elle s’intéresse tant aux fondements qu’à la mise en pratique des méthodes permettant de résoudre, par des calculs purement numériques, des problèmes d’analyse mathématique. Plus formellement, l’analyse numérique est l’étude des algorithmes permettant de résoudre numériquement par discrétisation les problèmes de mathématiques continues (distinguées des mathématiques discrètes).
Solution (chimie)Une solution, en chimie, est un mélange homogène (constitué d'une seule phase) résultant de la dissolution d'un ou plusieurs soluté(s) (espèce chimique dissoute) dans un solvant. Les molécules (ou les ions) de soluté sont alors solvatées et dispersées dans le solvant. La solution liquide est l'exemple le plus connu. Une solution ayant l'eau comme solvant est appelée solution aqueuse. Il est possible de mettre en solution : un liquide dans un autre : limité par la miscibilité des deux liquides ; un solide dans un liquide : limité par la solubilité du solide dans le solvant, au-delà de laquelle le solide n'est plus dissous.
Solution aqueusevignette|Photo montrant la préparation d'une solution aqueuse au moment où est versé le soluté. En chimie, une solution aqueuse est une phase liquide contenant plusieurs espèces chimiques, dont une ultramajoritaire, l'eau (H2O, le solvant), et des espèces ultraminoritaires, les solutés ou « espèces chimiques dissoutes ».
Arnoldi iterationIn numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method. Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices. The Arnoldi method belongs to a class of linear algebra algorithms that give a partial result after a small number of iterations, in contrast to so-called direct methods which must complete to give any useful results (see for example, Householder transformation).