P-groupeEn mathématiques, et plus précisément en algèbre, un p-groupe, pour un nombre premier p donné, est un groupe (fini ou infini) dont tout élément a pour ordre une puissance de p. Les p-sous-groupes de Sylow d'un groupe fini sont un exemple important de p-groupes. Tout sous-groupe et tout quotient d'un p-groupe est un p-groupe. Réciproquement, si H est un p-sous-groupe normal d'un groupe G et si le quotient G/H est un p-groupe, alors G est un p-groupe. On peut tirer du point précédent qu'un produit semi-direct de deux p-groupes est un p-groupe.
Groupe résolubleEn mathématiques, un groupe résoluble est un groupe qui peut être construit à partir de groupes abéliens par une suite finie d'extensions. Théorème d'Abel (algèbre) La théorie des groupes tire son origine de la recherche de solutions générales (ou de leur absence) pour les racines des polynômes de degré 5 ou plus. Le concept de groupe résoluble provient d'une propriété partagée par les groupes d'automorphismes des polynômes dont les racines peuvent être exprimées en utilisant seulement un nombre fini d'opérations élémentaires (racine n-ième, addition, multiplication, ).
Groupe de PrüferEn mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier.
Indice d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, si H est un sous-groupe d'un groupe G, l'indice du sous-groupe H dans G est le nombre de copies distinctes de H que l'on obtient en multipliant à gauche par un élément de G, soit le nombre des xH quand x parcourt G (on peut choisir en fait indifféremment de multiplier à gauche ou à droite). Les classes xH formant une partition, et la multiplication à gauche dans un groupe par un élément donné étant bijective, le produit de l'indice du sous-groupe H dans G par l'ordre de H égale l'ordre de G, ce dont on déduit, pour un groupe fini, le théorème de Lagrange.
Sous-groupe de FrattiniSoit G un groupe (au sens mathématique). Les éléments de G qui appartiennent à tout sous-groupe maximal de G forment un sous-groupe de G, qu'on appelle le sous-groupe de Frattini de G et qu'on note Φ(G). Si G admet au moins un sous-groupe maximal, on peut parler de l'intersection de ses sous-groupes maximaux et Φ(G) est égal à cette intersection. Si G n'a pas de sous-groupe maximal, Φ(G) est égal à G tout entier.
Focal subgroup theoremIn abstract algebra, the focal subgroup theorem describes the fusion of elements in a Sylow subgroup of a finite group. The focal subgroup theorem was introduced in and is the "first major application of the transfer" according to . The focal subgroup theorem relates the ideas of transfer and fusion such as described in . Various applications of these ideas include local criteria for p-nilpotence and various non-simplicity criteria focussing on showing that a finite group has a normal subgroup of index p.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Théorèmes de SylowEn théorie des groupes finis, les théorèmes de Sylow forment une réciproque partielle du théorème de Lagrange, d'après lequel, si H est sous-groupe d'un groupe fini G, alors l'ordre de H divise l'ordre de G. Ces théorèmes garantissent, pour certains diviseurs de l'ordre de G, l'existence de sous-groupes d'ordre égal à ces diviseurs, et donnent une information sur le nombre de ces sous-groupes. Ces théorèmes portent le nom du mathématicien norvégien Ludwig Sylow, qui les démontra en 1872.
Powerful p-groupIn mathematics, in the field of group theory, especially in the study of p-groups and pro-p-groups, the concept of powerful p-groups plays an important role. They were introduced in , where a number of applications are given, including results on Schur multipliers. Powerful p-groups are used in the study of automorphisms of p-groups , the solution of the restricted Burnside problem , the classification of finite p-groups via the coclass conjectures , and provided an excellent method of understanding analytic pro-p-groups .
Sous-groupe caractéristiqueDans un groupe G, un sous-groupe H est dit caractéristique lorsqu'il est stable par tout automorphisme de G : strictement caractéristique lorsqu'il est même stable par tout endomorphisme surjectif de G ; pleinement caractéristique, ou encore pleinement invariant, lorsqu'il est même stable par tout endomorphisme de G : Un sous-groupe H de G est sous-groupe caractéristique de G si et seulement si Un sous-groupe caractéristique de G est en particulier stable par tout automorphisme intérieur de G : c'est donc un