Limite supérieure et limite inférieurevignette|upright=1.8|Exemple de recherche de limites inférieure et supérieure. La suite (x) est représentée en bleu. En mathématiques, plus précisément en analyse réelle, les limites inférieures et supérieures sont des outils d'étude des suites de nombres réels. Une telle suite n'est en général ni monotone, ni convergente. L'introduction des limites supérieure et inférieure permet de retrouver, partiellement, de telles propriétés. Il s'agit d'un cas particulier de valeurs d'adhérence de la suite.
Méthode de Monte-CarloUne méthode de Monte-Carlo, ou méthode Monte-Carlo, est une méthode algorithmique visant à calculer une valeur numérique approchée en utilisant des procédés aléatoires, c'est-à-dire des techniques probabilistes. Les méthodes de Monte-Carlo sont particulièrement utilisées pour calculer des intégrales en dimensions plus grandes que 1 (en particulier, pour calculer des surfaces et des volumes). Elles sont également couramment utilisées en physique des particules, où des simulations probabilistes permettent d'estimer la forme d'un signal ou la sensibilité d'un détecteur.
Limite projectiveEn mathématiques, dans la formalisation du langage des catégories, la limite projective est une généralisation du produit. Cette notion est duale de celle de limite inductive. Soient un ensemble ordonné, une famille d'ensembles indexée par , et pour chaque couple tel que , une application . On suppose que ces applications vérifient les deux propriétés suivantes : Une telle structure est appelée système projectif d'ensembles.
Asymptotic safety in quantum gravityAsymptotic safety (sometimes also referred to as nonperturbative renormalizability) is a concept in quantum field theory which aims at finding a consistent and predictive quantum theory of the gravitational field. Its key ingredient is a nontrivial fixed point of the theory's renormalization group flow which controls the behavior of the coupling constants in the ultraviolet (UV) regime and renders physical quantities safe from divergences.
Développement asymptotiqueEn mathématiques, un développement asymptotique d'une fonction f donnée dans un voisinage fixé est une somme finie de fonctions de référence qui donne une bonne approximation du comportement de la fonction f dans le voisinage considéré. Le concept de développement asymptotique a été introduit par Poincaré à propos de l'étude du problème à N corps de la mécanique céleste par la théorie des perturbations. La somme étant finie, la question de la convergence ne se pose pas.
Asymptotically optimal algorithmIn computer science, an algorithm is said to be asymptotically optimal if, roughly speaking, for large inputs it performs at worst a constant factor (independent of the input size) worse than the best possible algorithm. It is a term commonly encountered in computer science research as a result of widespread use of big-O notation. More formally, an algorithm is asymptotically optimal with respect to a particular resource if the problem has been proven to require Ω(f(n)) of that resource, and the algorithm has been proven to use only O(f(n)).
Limite (mathématiques élémentaires)La notion de limite est très intuitive malgré sa formulation abstraite. Pour les mathématiques élémentaires, il convient de distinguer une limite en un point réel fini (pour une fonction numérique) et une limite en ou (pour une fonction numérique ou une suite), ces deux cas apparemment différents pouvant être unifiés à travers la notion topologique de voisinage. Les limites servent (entre autres) à définir les notions fondamentales de continuité et de dérivabilité.
Limite inductiveEn mathématiques, et plus particulièrement en théorie des catégories et en algèbre universelle, la notion de limite inductive généralise à des structures la notion classique de limite issue de l'analyse. La limite inductive est un cas particulier de colimite en théorie des catégories. Comme sa duale, la limite projective, elle est conceptuellement très proche de la notion de limite rencontrée en analyse et coïncide avec elle dans certains cas. Un premier point clef est la notion de passage à la limite.
Méthode de Monte-Carlo par chaînes de MarkovLes méthodes de Monte-Carlo par chaînes de Markov, ou méthodes MCMC pour Markov chain Monte Carlo en anglais, sont une classe de méthodes d'échantillonnage à partir de distributions de probabilité. Ces méthodes de Monte-Carlo se basent sur le parcours de chaînes de Markov qui ont pour lois stationnaires les distributions à échantillonner. Certaines méthodes utilisent des marches aléatoires sur les chaînes de Markov (algorithme de Metropolis-Hastings, échantillonnage de Gibbs), alors que d'autres algorithmes, plus complexes, introduisent des contraintes sur les parcours pour essayer d'accélérer la convergence (Monte Carlo Hybride, Surrelaxation successive).
High dynamic rangeHigh dynamic range (HDR) is a dynamic range higher than usual, synonyms are wide dynamic range, extended dynamic range, expanded dynamic range. The term is often used in discussing the dynamic range of various signals such as s, videos, audio or radio. It may apply to the means of recording, processing, and reproducing such signals including analog and digitized signals. The term is also the name of some of the technologies or techniques allowing to achieve high dynamic range images, videos, or audio.