P-groupeEn mathématiques, et plus précisément en algèbre, un p-groupe, pour un nombre premier p donné, est un groupe (fini ou infini) dont tout élément a pour ordre une puissance de p. Les p-sous-groupes de Sylow d'un groupe fini sont un exemple important de p-groupes. Tout sous-groupe et tout quotient d'un p-groupe est un p-groupe. Réciproquement, si H est un p-sous-groupe normal d'un groupe G et si le quotient G/H est un p-groupe, alors G est un p-groupe. On peut tirer du point précédent qu'un produit semi-direct de deux p-groupes est un p-groupe.
Classification des groupes simples finisEn mathématiques, et plus précisément en théorie des groupes, la classification des groupes simples finis, aussi appelée le théorème énorme, est un ensemble de travaux, principalement publiés entre environ 1955 et 1983, qui a pour but de classer tous les groupes finis simples. En tout, cet ensemble comprend des dizaines de milliers de pages publiées dans 500 articles par plus de 100 auteurs.
Théorèmes de SylowEn théorie des groupes finis, les théorèmes de Sylow forment une réciproque partielle du théorème de Lagrange, d'après lequel, si H est sous-groupe d'un groupe fini G, alors l'ordre de H divise l'ordre de G. Ces théorèmes garantissent, pour certains diviseurs de l'ordre de G, l'existence de sous-groupes d'ordre égal à ces diviseurs, et donnent une information sur le nombre de ces sous-groupes. Ces théorèmes portent le nom du mathématicien norvégien Ludwig Sylow, qui les démontra en 1872.
Groupe finivignette|Un exemple de groupe fini est le groupe des transformations laissant invariant un flocon de neige (par exemple la symétrie par rapport à l'axe horizontal). En mathématiques, un groupe fini est un groupe constitué d'un nombre fini d'éléments. Soit G un groupe. On note en général sa loi multiplicativement et on désigne alors son élément neutre par 1. Toutefois, si G est abélien, la loi est souvent notée additivement et son élément neutre est alors désigné par 0 ; ce n'est cependant pas une règle générale : par exemple, le groupe multiplicatif d'un corps commutatif est noté multiplicativement, bien qu'il soit abélien.
Sous-groupe de HallEn théorie des groupes (une branche des mathématiques), les sous-groupes de Hall d'un groupe fini sont les sous-groupes dont l'ordre et l'indice sont premiers entre eux. Ils portent le nom du mathématicien Philip Hall. Soit un groupe fini. Un sous-groupe de est appelé un sous-groupe de Hall de si son ordre est premier avec son indice dans . Autrement dit, un sous-groupe de est dit sous-groupe de Hall si est premier avec . Cela revient encore à dire que pour tout diviseur premier p de , la puissance à laquelle p figure dans est la même que celle à laquelle il figure dans .
Groupe de PrüferEn mathématiques, et plus particulièrement en théorie des groupes, on appelle p-groupe de Prüfer, ou encore groupe p-quasi-cyclique, pour un nombre premier p donné, tout groupe isomorphe au groupe multiplicatif formé par les racines complexes de l'unité dont les ordres sont des puissances de p. C'est donc un p-groupe abélien dénombrable. Les p-groupes de Prüfer étant isomorphes entre eux, on parle volontiers « du » p-groupe de Prüfer, sans en préciser un en particulier.
Théorie des représentations d'un groupe finivignette|Ferdinand Georg Frobenius, fondateur de la théorie de la représentation des groupes. En mathématiques et plus précisément en théorie des groupes, la théorie des représentations d'un groupe fini traite des représentations d'un groupe G dans le cas particulier où G est un groupe fini. Cet article traite de l'aspect mathématique et, de même que l'article de synthèse « Représentations d'un groupe fini », n'aborde que les représentations linéaires de G (par opposition aux représentations projectives ou ).
Cœur d'un sous-groupeEn mathématiques, et plus précisément en théorie des groupes, l'intersection des conjugués, dans un groupe , d'un sous-groupe de est appelée le cœur de (dans ) et est notée cœurG(H) ou encore . Le cœur de dans est le plus grand sous-groupe normal de contenu dans . Si on désigne par / l'ensemble des classes à gauche de modulo (cet ensemble n'est pas forcément muni d'une structure de groupe, n'étant pas supposé normal dans ), on sait que opère à gauche sur / par : Le cœur de dans est le noyau de cette opération.
Powerful p-groupIn mathematics, in the field of group theory, especially in the study of p-groups and pro-p-groups, the concept of powerful p-groups plays an important role. They were introduced in , where a number of applications are given, including results on Schur multipliers. Powerful p-groups are used in the study of automorphisms of p-groups , the solution of the restricted Burnside problem , the classification of finite p-groups via the coclass conjectures , and provided an excellent method of understanding analytic pro-p-groups .
Finitely generated groupIn algebra, a finitely generated group is a group G that has some finite generating set S so that every element of G can be written as the combination (under the group operation) of finitely many elements of S and of inverses of such elements. By definition, every finite group is finitely generated, since S can be taken to be G itself. Every infinite finitely generated group must be countable but countable groups need not be finitely generated. The additive group of rational numbers Q is an example of a countable group that is not finitely generated.