Intégration (mathématiques)En mathématiques, l'intégration ou calcul intégral est l'une des deux branches du calcul infinitésimal, l'autre étant le calcul différentiel. Les intégrales sont utilisées dans de multiples disciplines scientifiques notamment en physique pour des opérations de mesure de grandeurs (longueur d'une courbe, aire, volume, flux) ou en probabilités. Ses utilités pluridisciplinaires en font un outil scientifique fondamental. C'est la raison pour laquelle l'intégration est souvent abordée dès l'enseignement secondaire.
Équation intégraleUne équation intégrale est une équation où la fonction inconnue est à l'intérieur d'une intégrale. Elles sont importantes dans plusieurs domaines physiques. Les équations de Maxwell sont probablement leurs plus célèbres représentantes. Elles apparaissent dans des problèmes des transferts d'énergie radiative et des problèmes d'oscillations d'une corde, d'une membrane ou d'un axe. Les problèmes d'oscillation peuvent aussi être résolus à l'aide d'équations différentielles.
Intégration par partiesEn mathématiques, l'intégration par parties (parfois abrégée en IPP) est une méthode qui permet de transformer l'intégrale d'un produit de fonctions en d'autres intégrales. Elle est fréquemment utilisée pour calculer une intégrale (ou une primitive) d'un produit de fonctions. Cette formule peut être considérée comme une version intégrale de la règle du produit. Le mathématicien Brook Taylor a découvert l'intégration par parties, publiant d'abord l'idée en 1715.
Singular integral operators of convolution typeIn mathematics, singular integral operators of convolution type are the singular integral operators that arise on Rn and Tn through convolution by distributions; equivalently they are the singular integral operators that commute with translations. The classical examples in harmonic analysis are the harmonic conjugation operator on the circle, the Hilbert transform on the circle and the real line, the Beurling transform in the complex plane and the Riesz transforms in Euclidean space.
Calcul numérique d'une intégraleEn analyse numérique, il existe une vaste famille d’algorithmes dont le but principal est d’estimer la valeur numérique de l’intégrale définie sur un domaine particulier pour une fonction donnée (par exemple l’intégrale d’une fonction d’une variable sur un intervalle). Ces techniques procèdent en trois phases distinctes : Décomposition du domaine en morceaux (un intervalle en sous-intervalles contigus) ; Intégration approchée de la fonction sur chaque morceau ; Sommation des résultats numériques ainsi obtenus.
Équation différentielle linéaireUne équation différentielle linéaire est un cas particulier d'équation différentielle pour lequel on peut appliquer des procédés de superposition de solutions, et exploiter des résultats d'algèbre linéaire. De nombreuses équations différentielles de la physique vérifient la propriété de linéarité. De plus, les équations différentielles linéaires apparaissent naturellement en perturbant une équation différentielle (non linéaire) autour d'une de ses solutions.
Constant of integrationIn calculus, the constant of integration, often denoted by (or ), is a constant term added to an antiderivative of a function to indicate that the indefinite integral of (i.e., the set of all antiderivatives of ), on a connected domain, is only defined up to an additive constant. This constant expresses an ambiguity inherent in the construction of antiderivatives. More specifically, if a function is defined on an interval, and is an antiderivative of then the set of all antiderivatives of is given by the functions where is an arbitrary constant (meaning that any value of would make a valid antiderivative).
Intégrale de RiemannEn mathématiques et plus particulièrement en analyse réelle, l'intégrale de Riemann est une façon de définir l'intégrale, sur un segment, d'une fonction réelle. En termes géométriques, cette intégrale s'interprète comme l'aire du domaine sous la courbe représentative de la fonction, comptée algébriquement. Le procédé général utilisé pour définir l'intégrale de Riemann est l'approximation par des fonctions en escalier, pour lesquelles la définition de l'aire sous la courbe est aisée.
Singular integralIn mathematics, singular integrals are central to harmonic analysis and are intimately connected with the study of partial differential equations. Broadly speaking a singular integral is an integral operator whose kernel function K : Rn×Rn → R is singular along the diagonal x = y. Specifically, the singularity is such that |K(x, y)| is of size |x − y|−n asymptotically as |x − y| → 0. Since such integrals may not in general be absolutely integrable, a rigorous definition must define them as the limit of the integral over |y − x| > ε as ε → 0, but in practice this is a technicality.
Facteur intégrantEn mathématiques, un facteur intégrant est une fonction qu'on choisit afin de rendre plus facile la solution d'une équation comportant des dérivées. Les facteurs intégrants sont d'usage commun pour la solution d'équations différentielles, en particulier des équations différentielles ordinaires (EDO), ainsi qu'en calcul différentiel sur plusieurs variables, dans lequel cas la multiplication par un facteur intégrant permet d'obtenir une différentielle exacte à partir d'une différentielle inexacte.