Formule de Stirlingvignette La formule de Stirling, du nom du mathématicien écossais James Stirling, donne un équivalent de la factorielle d'un entier naturel n quand n tend vers l'infini : que l'on trouve souvent écrite ainsi : où le nombre e désigne la base de l'exponentielle. C'est Abraham de Moivre qui a initialement démontré la formule suivante : où C est une constante réelle (non nulle). L'apport de Stirling fut d'attribuer la valeur C = à la constante et de donner un développement de ln(n!) à tout ordre.
AsymptoteLe terme d'asymptote (prononciation : ) est utilisé en mathématiques pour préciser des propriétés éventuelles d'une branche infinie de courbe à accroissement tendant vers l'infinitésimal. C'est d'abord un adjectif d'étymologie grecque qui peut qualifier une droite, un cercle, un point... dont une courbe plus complexe peut se rapprocher. C'est aussi devenu un nom féminin synonyme de droite asymptote. Une droite asymptote à une courbe est une droite telle que, lorsque l'abscisse ou l'ordonnée tend vers l'infini, la distance de la courbe à la droite tend vers 0.
Théorie des nombres transcendantsEn mathématiques, la théorie des nombres transcendants est une branche de la théorie des nombres qui étudie les nombres transcendants (nombres qui ne sont pas des solutions d'une équation polynomiale à coefficients entiers). Un nombre complexe α est dit transcendant si pour tout polynôme non nul P à coefficients entiers, P(α) ≠ 0. Il en est alors de même pour tout polynôme non nul à coefficients rationnels. Plus généralement, la théorie traite de l'indépendance algébrique des nombres. Un ensemble de nombres {α1, α2, .
Factorization of polynomials over finite fieldsIn mathematics and computer algebra the factorization of a polynomial consists of decomposing it into a product of irreducible factors. This decomposition is theoretically possible and is unique for polynomials with coefficients in any field, but rather strong restrictions on the field of the coefficients are needed to allow the computation of the factorization by means of an algorithm. In practice, algorithms have been designed only for polynomials with coefficients in a finite field, in the field of rationals or in a finitely generated field extension of one of them.
Élément algébriqueEn théorie des corps un élément d'une extension L d'un corps commutatif K est dit algébrique sur K quand il existe un polynôme non nul à coefficients dans K s'annulant sur cet élément. Un élément qui n'est pas algébrique sur K est dit transcendant sur K. Il s'agit d'une généralisation des notions de nombre algébrique et nombre transcendant : un nombre algébrique est un nombre réel ou complexe, un élément de l'extension C du corps Q des rationnels, qui est algébrique sur Q.
Transcendental extensionIn mathematics, a transcendental extension is a field extension such that there exists an element in the field that is transcendental over the field ; that is, an element that is not a root of any univariate polynomial with coefficients in . In other words, a transcendental extension is a field extension that is not algebraic. For example, are both transcendental extensions of A transcendence basis of a field extension (or a transcendence basis of over ) is a maximal algebraically independent subset of over Transcendence bases share many properties with bases of vector spaces.
Nombre de Fermatthumb|Le mathématicien français Pierre de Fermat (1601-1665) étudia les propriétés des nombres portant maintenant son nom. Un nombre de Fermat est un nombre qui peut s'écrire sous la forme 22n + 1, avec n entier naturel. Le n-ième nombre de Fermat, 22n + 1, est noté Fn. Ces nombres doivent leur nom à Pierre de Fermat, qui émit la conjecture que tous ces nombres étaient premiers. Cette conjecture se révéla fausse, F5 étant composé, de même que tous les suivants jusqu'à F32.
Algorithme rho de PollardEn arithmétique modulaire, l’algorithme rho de Pollard est un algorithme de décomposition en produit de facteurs premiers spécifique qui est seulement effectif pour factoriser les entiers naturels avec de petits facteurs. Il fut conçu par John M. Pollard en 1975. Il est utilisé en cryptologie. Le succès le plus remarquable de l'algorithme rho a été la factorisation du huitième nombre de Fermat par Pollard et Brent, ce dernier ayant proposé une version améliorée de l'algorithme.