Polynôme symétriqueEn mathématiques, un polynôme symétrique est un polynôme en plusieurs indéterminées, invariant par permutation de ses indéterminées. Ils jouent notamment un rôle dans les relations entre coefficients et racines. Soit A un anneau commutatif unitaire. Un polynôme Q(T, ..., T) en n indéterminées à coefficients dans A est dit symétrique si pour toute permutation s de l'ensemble d'indices {1, ..., n}, l'égalité suivante est vérifiée : Exemples Pour n = 1, tout polynôme est symétrique.
Division d'un polynômeEn algèbre, l'anneau K[X] des polynômes à une indéterminée X et à coefficients dans un corps commutatif K, comme celui des nombres rationnels, réels ou complexes, dispose d'une division euclidienne, qui ressemble formellement à celle des nombres entiers. Si A et B sont deux polynômes de K[X], avec B non nul, il existe un unique couple (Q, R) de polynômes de K[X] tel que : Ici l'expression deg S, si S désigne un polynôme, signifie le degré de S.
Algorithmethumb|Algorithme de découpe d'un polygone quelconque en triangles (triangulation). Un algorithme est une suite finie et non ambiguë d'instructions et d’opérations permettant de résoudre une classe de problèmes. Le domaine qui étudie les algorithmes est appelé l'algorithmique. On retrouve aujourd'hui des algorithmes dans de nombreuses applications telles que le fonctionnement des ordinateurs, la cryptographie, le routage d'informations, la planification et l'utilisation optimale des ressources, le , le traitement de textes, la bio-informatique L' algorithme peut être mis en forme de façon graphique dans un algorigramme ou organigramme de programmation.
Réduction polynomialeUne réduction polynomiale est un outil d'informatique théorique, plus particulièrement de théorie de la complexité. C'est une classe particulière de réductions particulièrement importante, notamment pour le problème P = NP. Dans le cadre des langages formels pour les problèmes de décision, on dit qu'un langage est réductible en temps polynomial à un langage (noté ) s'il existe une fonction calculable en temps polynomial telle que pour tout , si et seulement si .
Liste de théorèmes du point fixeEn analyse, un théorème du point fixe donne des conditions suffisantes d’existence d’un point fixe pour une fonction ou une famille de fonctions. Plus précisément, étant donné un ensemble E et une famille de fonctions f définies sur E et à valeurs dans E, ces théorèmes permettent de justifier qu’il existe un élément x de E tel que pour toutes les fonctions considérées on ait . Certains de ces théorèmes fournissent même un processus itératif permettant d’approcher un tel point fixe.
Point fixeEn mathématiques, pour une application f d'un ensemble E dans lui-même, un élément x de E est un point fixe de f si f(x) = x. Exemples : dans le plan, la symétrie par rapport à un point A admet un unique point fixe : A ; l'application inverse (définie sur l'ensemble des réels non nuls) admet deux points fixes : –1 et 1, solutions de l'équation équivalente à l'équation . Graphiquement, les points fixes d'une fonction f (d'une variable réelle, à valeurs réelles) sont les points d'intersection de la droite d'équation y = x avec la courbe d'équation y = f(x).
Anneau factorielvignette|Organigramme des relations entre les différentes structures algébriques En mathématiques, un anneau factoriel est un cas particulier d'anneau intègre. À l'image des nombres entiers, il existe un équivalent du théorème fondamental de l'arithmétique pour une telle structure : tout élément non nul d'un anneau factoriel se décompose en un produit d'un élément inversible et d'éléments irréductibles, cette décomposition étant unique aux éléments inversibles près. Par exemple dans l'anneau Z des entiers relatifs, –2 est irréductible.
Équation polynomialeEn mathématiques, une équation polynomiale, ou équation algébrique, est une équation de la forme : où P est un polynôme. Voici un exemple d'équation simple avec une seule inconnue : Usuellement, le terme équation polynomiale désigne une équation avec une seule inconnue (notée ici x) : où l'entier naturel n et les , appelés coefficients de l’équation, sont connus. Les coefficients sont le plus souvent des nombres réels ou complexes, mais ils peuvent prendre leurs valeurs dans n’importe quel anneau.
Théorème du point fixe de LefschetzEn mathématiques, le théorème du point fixe de Lefschetz est une formule qui compte le nombre de points fixes d'une application continue d'un espace compact X dans lui-même en utilisant les traces des endomorphismes qu'elle induit sur l'homologie de X. Il est nommé d'après Solomon Lefschetz qui l'a démontré en 1926. Chaque point fixe est compté avec sa multiplicité. Une version faible du théorème suffit à démontrer qu'une application qui n'a aucun point fixe doit vérifier certaines propriétés particulières (comme une rotation du cercle).
Complexité en tempsEn algorithmique, la complexité en temps est une mesure du temps utilisé par un algorithme, exprimé comme fonction de la taille de l'entrée. Le temps compte le nombre d'étapes de calcul avant d'arriver à un résultat. Habituellement, le temps correspondant à des entrées de taille n est le temps le plus long parmi les temps d’exécution des entrées de cette taille ; on parle de complexité dans le pire cas. Les études de complexité portent dans la majorité des cas sur le comportement asymptotique, lorsque la taille des entrées tend vers l'infini, et l'on utilise couramment les notations grand O de Landau.