Oscillateur harmoniqueUn oscillateur harmonique est un oscillateur idéal dont l'évolution au cours du temps est décrite par une fonction sinusoïdale, dont la fréquence ne dépend que des caractéristiques du système et dont l'amplitude est constante. Ce modèle mathématique décrit l'évolution de n'importe quel système physique au voisinage d'une position d'équilibre stable, ce qui en fait un outil transversal utilisé dans de nombreux domaines : mécanique, électricité et électronique, optique. Il néglige les forces dissipatives (frottement par exemple).
Oscillateur de Van der PolL’oscillateur de Van der Pol est un système dynamique à temps continu à un degré de liberté. Il est décrit par une coordonnée x(t) vérifiant une équation différentielle faisant intervenir deux paramètres : une pulsation propre ω et un coefficient de non-linéarité ε. Lorsque ε = 0, cet oscillateur se réduit à un oscillateur harmonique pur. Il porte le nom de Balthasar van der Pol.
OscillationUne oscillation est un mouvement ou une fluctuation périodique autour d'une position d'équilibre stable. Les oscillations sont soit régulières (périodiques) soit décroissantes (amorties). Elles répondent aux mêmes équations quel que soit le domaine. Une oscillation est une "variation d'une grandeur mécanique, électrique, caractérisée par un changement périodique de sens". Le cycle d'une oscillation est le temps écoulé entre deux passages successifs par la position d'équilibre.
Oscillateur (électronique)vignette|Un oscillateur intégré à quartz. Un oscillateur électronique est un circuit dont la fonction est de produire un signal électrique périodique, de forme sinusoïdale, carrée, en dents de scie, ou quelconque. L'oscillateur peut avoir une fréquence fixe ou variable. Il existe plusieurs types d'oscillateurs électroniques ; les principaux sont : oscillateurs à circuit LC et un étage amplificateur, HF le plus souvent ; oscillateurs à déphasage avec étage RC, qui délivrent des signaux sinusoïdaux : l'exemple-type est l'oscillateur à pont de Wien ; générateur de créneaux ; oscillateur à quartz, très stable et de haute précision grâce à des résonateurs à micro-onde ; ils sont utilisés dans les horloges atomiques.
RésonanceLa résonance est un phénomène selon lequel certains systèmes physiques (électriques, mécaniques) sont sensibles à certaines fréquences. Un système résonant peut accumuler une énergie, si celle-ci est appliquée sous forme périodique, et proche d'une fréquence dite « fréquence de résonance ». Soumis à une telle excitation, le système va être le siège d'oscillations de plus en plus importantes, jusqu'à atteindre un régime d'équilibre qui dépend des éléments dissipatifs du système, ou bien jusqu'à une rupture d'un composant du système.
Cycle limiteDans le domaine des systèmes dynamiques, un cycle limite, ou cycle-limite sur un plan ou une variété bidimensionnelle est une trajectoire fermée dans l'espace des phases, telle qu'au moins une autre trajectoire spirale à l'intérieur lorsque le temps tend vers . Ces comportements s'observent dans certains systèmes non linéaires. Si toutes les trajectoires voisines approchent le cycle limite lorsque t , on parle de cycle limite stable ou attractif. Si en revanche cela se produit lorsque t , on parle de cycle limite instable ou non attractif.
Self-oscillationSelf-oscillation is the generation and maintenance of a periodic motion by a source of power that lacks any corresponding periodicity. The oscillator itself controls the phase with which the external power acts on it. Self-oscillators are therefore distinct from forced and parametric resonators, in which the power that sustains the motion must be modulated externally. In linear systems, self-oscillation appears as an instability associated with a negative damping term, which causes small perturbations to grow exponentially in amplitude.
Stabilité de LiapounovEn mathématiques et en automatique, la notion de stabilité de Liapounov (ou, plus correctement, de stabilité au sens de Liapounov) apparaît dans l'étude des systèmes dynamiques. De manière générale, la notion de stabilité joue également un rôle en mécanique, dans les modèles économiques, les algorithmes numériques, la mécanique quantique, la physique nucléaire Un exemple typique de système stable au sens de Liapounov est celui constitué d'une bille roulant sans frottement au fond d'une coupelle ayant la forme d'une demi-sphère creuse : après avoir été écartée de sa position d'équilibre (qui est le fond de la coupelle), la bille oscille autour de cette position, sans s'éloigner davantage : la composante tangentielle de la force de gravité ramène constamment la bille vers sa position d'équilibre.
Oscillation de relaxationLes oscillations de relaxation sont des oscillations non linéaires, obtenues par augmentation continue d'une contrainte, puis relâchement subit de celle-ci. Lorsque la contrainte devient trop forte, la partie résistante cède brusquement, une partie de l'énergie est évacuée, la contrainte croît à nouveau et le cycle recommence. On peut illustrer cela par un filet d'eau qui remplit un récipient articulé autour d'un axe horizontal. Lorsque le récipient est plein, il devient instable et se vide d'un coup puis revient en place.
Théorie de la stabilitéEn mathématiques, la théorie de la stabilité traite la stabilité des solutions d'équations différentielles et des trajectoires des systèmes dynamiques sous des petites perturbations des conditions initiales. L'équation de la chaleur, par exemple, est une équation aux dérivées partielles stable parce que des petites perturbations des conditions initiales conduisent à des faibles variations de la température à un temps ultérieur en raison du principe du maximum.