Espace de Hilbertvignette|Une photographie de David Hilbert (1862 - 1943) qui a donné son nom aux espaces dont il est question dans cet article. En mathématiques, un espace de Hilbert est un espace vectoriel réel (resp. complexe) muni d'un produit scalaire euclidien (resp. hermitien), qui permet de mesurer des longueurs et des angles et de définir une orthogonalité. De plus, un espace de Hilbert est complet, ce qui permet d'y appliquer des techniques d'analyse. Ces espaces doivent leur nom au mathématicien allemand David Hilbert.
Espace de BanachEn mathématiques, plus particulièrement en analyse fonctionnelle, on appelle espace de Banach un espace vectoriel normé sur un sous-corps K de C (en général, K = R ou C), complet pour la distance issue de sa norme. Comme la topologie induite par sa distance est compatible avec sa structure d’espace vectoriel, c’est un espace vectoriel topologique. Les espaces de Banach possèdent de nombreuses propriétés qui font d'eux un outil essentiel pour l'analyse fonctionnelle. Ils doivent leur nom au mathématicien polonais Stefan Banach.
Groupe moyennableEn mathématiques, un groupe moyennable (parfois appelé groupe amenable par calque de l'anglais) est un groupe topologique localement compact qu'on peut munir d'une opération de « moyenne » sur les fonctions bornées, invariante par les translations par les éléments du groupe. La définition initiale, donnée à partir d'une mesure (simplement additive) des sous-ensembles du groupe, fut proposée par John von Neumann en 1929 à la suite de son analyse du paradoxe de Banach-Tarski.
Tribu boréliennevignette|Normal distribution pdf. En mathématiques, la tribu borélienne (également appelée tribu de Borel ou tribu des boréliens) sur un espace topologique est la plus petite tribu sur contenant tous les ensembles ouverts. Les éléments de la tribu borélienne sont appelés des boréliens. Le concept doit son nom à Émile Borel, qui a publié en 1898 une première exposition de la tribu borélienne de la droite réelle. La tribu borélienne peut, de manière équivalente, se définir comme la plus petite tribu qui contient tous les sous-ensembles fermés de .
Espace métriqueEn mathématiques et plus particulièrement en topologie, un espace métrique est un ensemble au sein duquel une notion de distance entre les éléments de l'ensemble est définie. Les éléments seront, en général, appelés des points. Tout espace métrique est canoniquement muni d'une topologie. Les espaces métrisables sont les espaces topologiques obtenus de cette manière. L'exemple correspondant le plus à notre expérience intuitive de l'espace est l'espace euclidien à trois dimensions.
Espace de FréchetUn espace de Fréchet est une structure mathématique d'espace vectoriel topologique satisfaisant certains théorèmes relatifs aux espaces de Banach même en l'absence d'une norme. Cette dénomination fait référence à Maurice Fréchet, mathématicien français ayant participé notamment à la fondation de la topologie et à ses applications en analyse fonctionnelle. C'est dans ce dernier domaine que la structure des espaces de Fréchet se révèle particulièrement utile, notamment en fournissant une topologie naturelle aux espaces de fonctions infiniment dérivables et aux espaces de distributions.
Espace completEn mathématiques, un espace métrique complet est un espace métrique dans lequel toute suite de Cauchy converge. La propriété de complétude dépend de la distance. Il est donc important de toujours préciser la distance que l'on prend quand on parle d'espace complet. Intuitivement, un espace est complet s'il « n'a pas de trou », s'il « n'a aucun point manquant ». Par exemple, les nombres rationnels ne forment pas un espace complet, puisque n'y figure pas alors qu'il existe une suite de Cauchy de nombres rationnels ayant cette limite.
Locally finite collectionA collection of subsets of a topological space is said to be locally finite if each point in the space has a neighbourhood that intersects only finitely many of the sets in the collection. In the mathematical field of topology, local finiteness is a property of collections of subsets of a topological space. It is fundamental in the study of paracompactness and topological dimension. Note that the term locally finite has different meanings in other mathematical fields. A finite collection of subsets of a topological space is locally finite.
Espace LpEn mathématiques, un espace L est un espace vectoriel de classes des fonctions dont la puissance d'exposant p est intégrable au sens de Lebesgue, où p est un nombre réel strictement positif. Le passage à la limite de l'exposant aboutit à la construction des espaces L de fonctions bornées. Les espaces L sont appelés espaces de Lebesgue. Identifiant les fonctions qui ne diffèrent que sur un ensemble négligeable, chaque espace L est un espace de Banach lorsque l'exposant est supérieur ou égal à 1.
ErgodicityIn mathematics, ergodicity expresses the idea that a point of a moving system, either a dynamical system or a stochastic process, will eventually visit all parts of the space that the system moves in, in a uniform and random sense. This implies that the average behavior of the system can be deduced from the trajectory of a "typical" point. Equivalently, a sufficiently large collection of random samples from a process can represent the average statistical properties of the entire process.